
Scalable Process Discovery and Conformance
Checking

Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

Eindhoven University of Technology, the Netherlands
{s.j.j.leemans, d.fahland, w.m.p.v.d.aalst}@tue.nl

Abstract Considerable amounts of data, including process event data,
are collected and stored by organisations nowadays. Discovering a process
model from recorded process event data and verification of the quality of
discovered models are important steps in process mining. Many discovery
techniques have been proposed, but none combines scalability with qual-
ity guarantees. We would like such techniques to handle billions of events
or thousands of activities, to produce sound models (without deadlocks
and other anomalies), and to guarantee that the underlying process can
be rediscovered when sufficient information is available. In this paper, we
introduce a framework for process discovery that ensures these properties
while passing over the log only once and we introduce three algorithms
using the framework. To measure the quality of discovered models on
these large logs, we introduce a model-model and model-log comparison
framework that applies a divide-and-conquer strategy to measure recall,
fitness and precision. We experimentally show that these discovery and
measuring techniques sacrifice little compared to other algorithms, while
gaining the ability to cope with event logs of 100,000,000 traces and
processes of 10,000 activities.

Keywords: big data, scalable process mining, block-structured process discov-
ery, directly-follows graphs, algorithm evaluation, rediscoverability, conformance
checking

1 Introduction

Considerable amounts of data are collected and stored by organisations nowadays.
For instance, ERP systems log business transaction events, high tech systems
such as X-ray machines record software and hardware events, and web servers
log page visits. Typically, each action of a user executed with the system, e.g. a
customer filling in a form or a machine being switched on, can be recorded by
the system as an event; all events related to the same process execution, e.g. a
customer order or an X-Ray diagnosis, are grouped in a trace (ordered by their
time); an event log contains all recorded traces of the system. Process mining
aims to extract information from such event logs, for instance social networks,
business process models, compliance to rules and regulations, and performance
information (e.g. bottlenecks) [6].

2 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

system

system-
model

log model

implemented by

executes discover

log-conformance

model-conformance

Figure 1: Process discovery and conformance checking in their context. The box
contains a typical process mining project’s scope.

In this paper, we focus on two challenges of process mining: process discovery
and conformance checking. Figure 1 shows the context of these two challenges:
a real-life business process (a system) is running, and the executed process steps
are recorded in an event log. In process discovery, one assumes that the inner
workings of the system are unknown to the analyst and cannot be obtained
otherwise. Therefore, process discovery aims to learn a process model from an
event log, which describes the system as it actually happened (in contrast to what
is assumed has happened) [2]. Two main challenges exist in process discovery:
first, one would like to learn an easy to understand model that captures the
actual behaviour. Second, the model should have a proper formal interpretation,
i.e. have well-defined behavioural semantics and be free of deadlocks and other
anomalies (be sound) [43]. In Section 2, we explore these challenges in more
detail and explore how they are realised in existing algorithms and settings. Few
existing algorithms solve both challenges together.

In contrast, conformance checking studies the differences between a process
model and reality. We distinguish two types of conformance checking. First, the
model can be compared with a log. Such log-conformance checking can provide
insight into the real behaviour of an organisation, by highlighting which traces
deviate from the model, and where in the model deviations occur [2]. Second,
the model can be compared with a model of the system (if that is available).
Model-conformance checking can be used to highlight differences between dif-
ferent snapshots of a process, or to verify that a process model conforms to a
design made earlier [27]. Moreover, model-conformance checking can be used to
evaluate discovery algorithms by choosing a system-model and quantifying the
similarity between this chosen model and the models discovered by a discovery
algorithms. In Section 2 we discuss both log and model conformance checking in
more detail.

Large Event Logs. Current process discovery and conformance checking tech-
niques work reasonably well on smaller event logs, but might have difficulties
handling larger event logs. For instance, discovery techniques typically require
the event log to fit in main memory and require the log to be rather complete,
i.e. most of the possible behaviour must be present. Reducing the log size to fit
in memory, e.g. through sampling, may yield incomplete event logs, which for

Scalable Process Discovery and Conformance Checking 3

discovery may lead to over-fitting models (showing only the behaviour of the
sample but not of the system) or under-fitting models (showing arbitrary beha-
viour beyond the sample log) (for discovery). For conformance checking, such
logs may lead to skewed measurements [2].

Event logs might be larger on two dimensions: the number of events or the
number of activities (i.e. the different process steps). From our experiments (Sec-
tion 6), we identified relevant gradations for these dimensions: for the number
of activities we identified complex logs, i.e. containing hundreds of activities,
and more complex logs, i.e. containing thousands of activities. For the number
of events we identified medium logs, i.e. containing tens of thousands of events,
large logs, i.e. containing millions of events, and larger logs, i.e. containing
billions of events. In contrast, event logs typically considered in process mining
are medium and simple, i.e. containing tens of activities, e.g. [29].

of activities

of

 e
ve

nt
s 101

103

105

107

109

101 102 103 104
100

α

HM

IMd (this paper)

IM
BPIC11

SL

CS
co

m
pl

ex

m
or

e
co

m
pl

ex

large

larger
LHC

medium

Figure 2: dots: maximum number of events
several discovery algorithms could handle
(Section 6). (connected for readability, al-
gorithms see Section 2); Circles: logs.

In our experiments we ob-
served that existing process dis-
covery algorithms with strong
quality guarantees, e.g. sound-
ness, can handle medium logs (see
IM in Figure 2; the algorithms
will be introduced later). al-
gorithms not providing such guar-
antees (α, HM) can handle large
logs, but fail on larger logs.
In the dimension of the num-
ber of different activities, ex-
periments showed that most al-
gorithms could not handle com-
plex processes. Current conform-
ance checking techniques in our
experiments and [50] seem to
be unable to handle medium or
complex event logs.

Such numbers of events and
activities might seem large for a
complaint-handling process in an
airline, however processes of much
larger complexity exist. For in-
stance, even simple software tools
contains hundreds or thousands
of different methods. To study
or reverse engineer such software,
studies [39] have recorded method
calls in event logs (at various
levels of granularity), and process
mining and software mining techniques have been used on small examples to

4 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

perform the analyses [51,39]; we obtained a large and complex log (SL). com-
plex logs can for instance be found in hospitals: the BPI Challenge log of 2011
(BPIC11) [28] was recorded in the emergency department of a Dutch hospital
and contains over 600 activities [28]. Even though this log is just complex and
medium, current discovery techniques have difficulties with this log (we will use
it in the evaluation). Other areas in which more complex logs appear are click-
stream data from web-sites, such as the web-site of a dot-com start-up, which
produced an event log containing 3300 activities (CL) [37]. Even more difficult
logs could be extracted from large machines, such as the Large Hadron Collider,
in which over 25,000 distributed communicating components form just a part of
the control systems [36], resulting in complicated behaviour that could be ana-
lysed using scalable process mining techniques. In the future, we aim to extract
such logs and apply our techniques to it, but currently, we would only discover a
model buy not be able to process the discovered model further (no conformance
checking and no visualisation on that scale). Nevertheless, we will show in our
evaluation that our discovery techniques are able to handle such logs.

Problem Definition and Contribution. In this paper, we address two problems:
applying process discovery to larger and more complex logs, and conform-
ance checking to medium and complex logs. We introduce two scalable frame-
works: one for process discovery, the Inductive Miner - directly-follows framework
(IMd framework), and one for conformance checking: the projected conformance
checking framework (pcc framework). We instantiate these frameworks to ob-
tain several algorithms, each with their specific purposes. For discovery, we show
how to adapt an existing family of algorithms that offers several quality guaran-
tees (the Inductive Miner framework (IM framework) [40]), such that is scales
better and works on larger and more complex logs. We show that the recur-
sion on event logs used by the IM framework can be replaced by recursion on
an abstraction (i.e. the so-called directly-follows graph [40]), which can be com-
puted in a single pass over the event log. We show that this principle can also be
applied to incomplete event logs (when a discovery technique has to infer miss-
ing information) and logs with infrequent behaviour or noise (when a discovery
algorithm has to identify and filter the events that would degrade model qual-
ity); we present corresponding algorithms. Incompleteness and infrequency/noise
pose opposing challenges to discovery algorithms, i.e. not enough and too much
information. For these purposes, we introduce different algorithms. For conform-
ance checking, we introduce the configurable divide-and-conquer pcc framework
to compare logs to models and models to models. Instead of comparing the com-
plete behaviour over all activities, we decompose the problem into comparing
behaviour for subsets of activities. For each such subset, a recall, fitness or pre-
cision measure is computed. The average over these subsets provides the final
measure, while the subsets with low values give information about the location
in the model/log/system-model where deviations occur.

Results. We conducted a series of experiments in which we tested how well al-
gorithms handle large logs and complex processes, in which we found that the

Scalable Process Discovery and Conformance Checking 5

IMd framework provides the scalability to handle all kinds of logs up to larger
and more complex logs (see Figure 2). In a second series of experiments we
investigated the ability of several discovery algorithms to rediscover the original
system-model: we experimented to analyse the influence of log sizes, i.e. com-
pleteness of the logs, to analyse the influence of noise, i.e. randomly appearing
or missing events in process executions, and to assess the influence of infrequent
behaviour, i.e. structural deviations from the system-model during execution.
We found that the new discovery algorithms perform comparable to existing
algorithms, while providing much better scalability. In a third experiment, we
explored how the new discovery algorithms handle large and complex real-life
logs.

In all these experiments, the new pcc framework was applied to assess the
quality of the discovered models with respect to the log and where applicable the
system, as existing conformance checking techniques could not handle medium
or complex logs and systems. We compared the new conformance checking
techniques to existing techniques, and the results suggest that the new techniques
might be able to replace existing less-scalable techniques. In particular, model
quality with respect to a log can now be assessed in situations where existing
techniques fail, up to large and complex logs.

Relation to earlier papers. This paper extends the work presented in [41]. We
present the new pcc framework, which is able to cope with medium and com-
plex logs and models. This allows us to analyse and compare the quality of the
IMd framework to other algorithms on such event logs in detail.

Outline. First, process mining is discussed in more detail in Section 2. Second,
process trees, directly-follows graphs and cuts are introduced in Section 3. In
Section 4, the IMd framework and three algorithms using it are introduced.
We introduce the pcc framework in Section 5. The algorithms are evaluated in
Section 6 using this pcc framework. Section 7 concludes the paper.

2 Process Mining

In this section, we discuss conformance checking and process discovery in more
detail.

2.1 Conformance Checking

The aim of conformance checking is to verify a process model against reality.
As shown in Figure 1, two types of conformance checking exist: log-model con-
formance checking and model-model conformance checking. In log-model con-
formance checking, reality is assumed to be represented by an event log, while in
model-model conformance checking, a representation of the system is assumed
to be present and to represent reality. Such a system is usually given as another
process model, to which we refer to as system-model.

6 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

Log-Model Conformance Checking. To compare a process model to an
event log, several quality measures have been proposed [9]. For instance, fitness
expresses the part of the event log that is represented by the model, log-precision
expresses the behaviour in the model that is present in the event log, general-
isation expresses the likelihood that future behaviour will be representible by
the model, and simplicity expresses the absence of complexity in a model [9] to
represent its behaviour.

Several techniques and measures have been proposed to measure fitness and
precision, such as token-based replay [54], alignments [9,10] and many more:
for an overview, see [56]. Some techniques that were proposed earlier, such as
token-based replay [54], cannot handle non-determinism well, i.e. silent activ-
ities (τ) and duplicate activities. Later techniques, such as alignments [9], can
handle non-determinism by exhaustively searching for the model trace that has
the least deviations from a given log trace (according to some cost function).
However, even optimised implementations of these techniques cannot deal with
medium or complex event logs and models [50]. To alleviate this problem, de-
composition techniques have been proposed, for instance using passages [3,4]
or single-entry-single-exit decompositions [50]. The pcc framework presented in
this paper can be seen as a generalisation of these techniques, that takes the
context of decomposed nets into account.

Model-Model Conformance Checking. For a more elaborate overview of
this field, we refer to [27] and [14].

Typically, the quality of a process discovery algorithm is measured using
log-conformance checking, i.e. a discovered model is compared to an event log.
Alternatively, discovered model and system-model could be compared directly.
Ideally, both would be compared on branching bisimilarity or even stronger
notions of equivalence [33], thereby taking the moments of choice into account.
However, as an event log describes a language and does not contain information
about choices, the discovered model will lack this information as well and we
consider comparison based on languages (trace equivalence, a language is the set
of traces of a log, or the set of traces that a model can produce).

One such technique is [12]. This approach translates the models into partially-
ordered runs annotated with exclusive relationships (event structures), which
can be generated from process models as well [12]. However, event structures
have difficulties supporting loops by their acyclic nature and constructing them
requires a full state-space exploration.

As noted in [27], many model-model comparison techniques suffer from ex-
ponential complexity due to concurrency and loops in the models. To overcome
this problem, several techniques apply an abstraction, for instance using causal
footprints [30], weak order relations [65] or behavioural profiles [58,38]. Another
technique to reduce the state space is decompose the model in pieces and perform
the computations on these pieces individually [38]. Our approach (pcc frame-
work, which applies to both log-model and model-model conformance checking)
applies an abstraction using a different angle: we project on subsets of activ-

Scalable Process Discovery and Conformance Checking 7

ities, thereby generalising over many of these abstractions, i.e. many relations
between the projected activities are captured. Moreover, our approach handles
any formalism of which the executable semantics can be described by Determin-
istic Finite Automata, which includes labelled Petri nets, i.e. duplicate activities,
silent transitions, and even some unsound models.

2.2 Process Discovery

Process discovery aims at discovering a process model from an event log (see
Figure 1). We first sketch some challenges that discovery algorithms face, after
which we discuss existing discovery approaches.

Challenges. Several factors challenge process discovery algorithms. One such
challenge is that the resulting process model should have well-defined behavi-
oural semantics and be sound [2]. Even though an unsound process model or a
model without a language, i.e. without a definition of traces the model expresses,
might be useful for manual analysis, conformance checking and other automated
techniques can obviously not provide accurate measures on such models [55,43].
The IMd framework uses its representational bias to provide a language and
to guarantee soundness: it discovers an abstract hierarchical view on workflow
nets [2], process trees, that is guaranteed to be sound [20].

Another challenge of process discovery is that for many event logs the meas-
ures fitness, log-precision, generalisation and simplicity are competing, i.e. there
might not exist a model that scores well on all criteria [21]. Thus, discovery
algorithms have to balance these measures, and this balance might depend on
the use case at hand, e.g. auditing questions are best answered using a model
with high fitness, optimisations are best performed on a model with high log-
precision, implementations might require a model with high generalisation, and
human interpretation is eased by a simple model [21].

A desirable property of discovery algorithms is having the ability to redis-
cover the language of the system (rediscoverability); we assume the system and
the system-model to have the same behaviour for rediscoverability. Rediscov-
erability is usually proven using assumptions on both system and event log:
the system typically must be of a certain class, and the event log must contain
enough correct information to describe the system well [40]. Therefore, three
more challenges of process discovery algorithms are to handle 1) noise in the
event log, i.e. random absence or presence of events [19], 2) infrequent beha-
viour, i.e. behaviour that occurs less frequent than ‘normal’ behaviour, i.e. the
exceptional cases. For instance, most complaints sent to an airline are handled
according to a model, but a few complaints are so complicated that they require
ad-hoc solutions. This behaviour could be of interest or not, which depends on
the goal of the analysis [2]. 3) incompleteness, i.e. the event log does not con-
tain “enough” information. The notion of what “enough” means depends on the
discovery algorithm [13,40]. Even though rediscoverability is desirable, it is a
formal property, and it is not easy to compare algorithms using it. However, the

8 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

pcc framework allows to perform experiments to quantify how rediscoverability
is influenced by noise, infrequent behaviour and incompleteness.

A last challenge arises from the main focus of this paper, i.e. highly scal-
able environments. Ideally, a discovery technique should linearly pass over the
event log once, which removes the need to keep the event log in memory. In the
remainder of this section, we discuss related process discovery techniques and
their application in scalable environments.

Sound Process Discovery Algorithms. Process discovery techniques such as the
Evolutionary Tree Miner (ETM) [20], the Constructs Competition Miner (CCM)
[52], Maximal Pattern Mining (MPM) [46] and Inductive Miner (IM) [40] provide
several quality guarantees, in particular soundness and some offer rediscoverab-
ility, but do not manage to discover a model in a single pass. ETM applies a
genetic strategy, i.e. generates an initial population, and then applies random
crossover steps, selects the ‘best’ individuals from the population and repeats.
While ETM is very flexible towards the desired log-measures to which respect
the model should be ‘best’ and guarantees soundness, it requires multiple passes
over the event log and does not provide rediscoverability.

CCM and IM use a divide-and-conquer strategy on event logs. In the In-
ductive Miner IM framework, first an appropriate cut of the process activities
is selected; second, that cut is used to split the event log into sub logs; third,
these sub logs are recursed on, until a base case is encountered. If no appropri-
ate cut can be found, a fall-through (‘anything can happen’) is returned. CCM
works similarly by having several process constructs compete with one another.
While both CCM and the IM framework guarantee soundness and IM guaran-
tees rediscoverability (for the class of models described in [42, Appendix A]),
both require multiple passes through the event log (the event log is being split
and recursed on).

MPM first constructs a prefix-tree of the event log. Second, it folds leaves to
obtain a process model, thereby applying local generalisations to detect concur-
rency. The MPM technique guarantees soundness and fitness, allows for noise
filtering and can reach high precision, but it does so at the cost of simplicity: typ-
ically, lots of activities are duplicated. Inherently, the MPM technique requires
random access to the event log and a single pass does not suffice.

Other Process Discovery Algorithms. Other process discovery techniques are
for instance the α-algorithm (α) and its derivatives [7,61,62], the Heuristics
Miner [59] (HM), the Integer Linear Programming miner [63] (ILP) and sev-
eral commercial tools, such as Fluxicon Disco (FD) [34] and Perceptive Process
Mining (two versions: PM1 and PM2).

Some of these guarantee soundness, but do not support explicit concurrency
(FD, PM1) [45]. The ILP miner guarantees fitness and can guarantee that the
model is empty after completion, but only for the traces seen in the event log,
i.e. the models produced by ILP are usually not sound. However, most of these
algorithms (α, HM, ILP, PM2) do not guarantee soundness or even provide
a final marking, which makes it difficult to determine their language (see [42,

Scalable Process Discovery and Conformance Checking 9

Appendix E]), thus their models are difficult to analyse automatically (though,
such unsound models can still be useful for manual analysis).

Several techniques (α, HM) satisfy the single-pass requirement. These al-
gorithms first obtain an abstraction from the log, which denotes what activities
directly follow one another; in HM, this abstraction is filtered. Second, from this
abstraction a process model is constructed. Both α and HM have been demon-
strated to be applicable in highly-scalable environments: event logs of 5 million
traces have been processed using map-reduce techniques [31]. Moreover, α guar-
antees rediscoverability, but neither α nor HM guarantees soundness. We show
that our approach offers the same scalability as HM and α, but provides both
soundness and rediscoverability.

Some commercial tools such as FD and PM1 offer high scalability, but do
not support explicit concurrency [45]. Other discovery techniques, such as the
language-based region miner [17,18] or the state-based region miner [25] guar-
antee fitness but neither soundness nor rediscoverability nor work in single pass.

Software Mining. In the field of software mining, similar techniques have been
used to discover formal specifications of software. For instance, in [51] and [11],
execution sequences of software runs (i.e. traces) are recorded in an event log,
from which techniques extract e.g. valid execution sequences on the methods of
an api. Such valid execution sequences can then be used to generate document-
ation. Process discovery differs from software mining in focus and challenges:
Process discovery aims to find process models with soundness and concurrency
and is challenged e.g. by deviations from the model (noise, infrequent behaviour)
and readability requirements of the discovered models, while for software mining
techniques, the system is fixed and challenges arise from e.g. nesting levels [51],
programmed exceptions [64] and collaborating components [32].

Streams. Another set of approaches that aims to handle even bigger logs assumes
that the event log is an unbounded stream of events. Some approaches such as
[26,35] work on click-stream data, i.e. the sequence of web pages users visit, to
extract for instance clusters of similar users or web pages. However, we aim to
extract end-to-end process models, in particular containing parallelism. HM, α
and CCM have been shown to be applicable in streaming environments [23,53].
While streaming algorithms could handle event logs containing billions of events
by feeding them as streams, these algorithms assume the log can never be ex-
amined completely and, as of the unbounded stream, eventually cannot store
information for an event without throwing away information about an earlier
seen event. In this paper, we assume the log is bounded and we investigate how
far we can get using all information in it.

3 Preliminaries

To overcome the limitations of process discovery on large event logs, we will com-
bine the single-pass property of directly-follows graphs with a divide-and-conquer

10 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

strategy. This section recalls these existing concepts. The new algorithms are in-
troduced in Section 4.

3.1 Basic Notions

Event Logs. An event log is a multiset of traces that denote process executions.
For instance, the event log [〈a, b, c〉, 〈b, d〉2] denotes the event log in which the
trace consisting of the activity a followed by the activity b followed by the activity
c was executed once, and the trace consisting of b followed by d was executed
twice.

Process Trees. A process tree is an abstract representation of a block-structured
hierarchical process model, in which the leaves represent the activities, i.e. the
basic process steps, and the operators describe how their children are to be com-
bined [20]. τ denotes the activity whose execution is not visible in the event log.
We consider four operators: ×, →, ∧ and 	. × describes the exclusive choice
between its children, → the sequential composition and ∧ the parallel composi-
tion. The first child of a loop 	 is the body of the loop, all other children are redo
children. First, the body must be executed, followed by zero or more iterations
of a redo child and the body. A formal definition is given in [42, Appendix A]; we
give an example here: Figure 3 shows the Petri net corresponding to the process
tree →(×(∧(a, b), c),×((→(d, e), f), g)). Process trees are inherently sound.

b

c

d e

f

g

a

Figure 3: A block-structured hierarchical workflow net; the block-structure is
denoted by filled regions (image taken from [44]).

Directly-Follows Graphs. A directly-follows graph can be derived from a log and
describes what activities follow one another directly, and with which activities
a trace starts or ends. In a directly-follows graph, there is an edge from an
activity a to an activity b if a is followed directly by b. The weight of an edge
denotes how often that happened. For instance, the directly-follows graph of our
example log [〈a, b, c〉, 〈b, d〉2] is shown in Figure 4. Note that the multiset of start
activities is [a, b2] and the multiset of end activities is [c, d2]. A directly-follows
graph can be obtained in a single pass over the event log with minimal memory
requirements [31].

Scalable Process Discovery and Conformance Checking 11

a b

c

d
1 2

2

1

1

1

2

Figure 4: Example of a directly-follows graph.

Cuts, Characteristics and the Inductive Miner framework. A partition is a non-
overlapping division of the activities of a directly-follows graph. For instance,
({a, b}, {c, d}) is a binary partition of the directly-follows graph in Figure 4. A cut
is a partition combined with a process tree operator, for instance (→, {a, b}, {c, d}).
In the IM framework, finding a cut is an essential step: its operator becomes the
root of the process tree, and its partition determines how the log is split.

The IM framework [40] discovers the main cut, and projects the given log
onto the activity partition. In case of loops, each iteration becomes a new trace
in the projected sub-log. Subsequently, for each sub-log its main cut is detected
and recursion continues until reaching partitions with singleton elements; these
become the leaves of the process tree. If no cut can be found, a generalising fall-
through is returned that allows for any behaviour (a “flower model”). By the
use of process trees, the IM framework guarantees sound models, and makes it
easy to guarantee fitness. The IM framework is formalised in [42, Appendix A].

Suppose that the log is produced by a process which can be represented by a
process tree T . Then, the root of T leaves certain characteristics in the log and
in the directly-follows graph. The most basic algorithm that uses the IM frame-
work, i.e. IM [40], searches for a cut that matches these characteristics perfectly.
Other algorithms using the IM framework are the infrequent-behaviour-filtering
Inductive Miner - infrequent (IMf) [43] and the incompleteness-handling In-
ductive Miner - incompleteness (IMc) [44].

3.2 Cut Detection

Cut definitions are given [42, Appendix A]. Here we describe how the cut de-
tection works. Each of the four process tree operators ×, →, ∧ and 	 leaves a
different characteristic footprint in the directly-follows graph. Figure 5 visual-
ises these characteristics: for exclusive choice, the activities of one sub-tree will
never occur in the same trace as activities of another sub-tree. Hence, activities
of the different sub-trees form clusters that are not connected by edges in the
directly-follows graph. Thus, the × cut is computed by taking the connected
components of the directly-follows graph.

If two sub-trees are sequentially ordered, all activities of the first sub-tree
strictly precede all activists of the second sub-tree; in the directly-follows graph
we expect to see a chain of clusters without edges going back. The procedure to

12 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

...

sequence:

...

exclusive choice:

...

parallel:

...

loop:

Figure 5: Cut characteristics.

discover a sequence cut is as follows: each activity starts as a singleton set. First,
the strongly connected components of the directly-follows graph are computed
and merged. By definition, two activities are in a strongly connected component
if they are pairwise reachable, and therefore they cannot sequential. Second,
pairwise unreachable sets are merged, as if there is no way to reach two nodes in
the same trace, they cannot be sequential. Finally, the remaining sets are sorted
based on reachability.

The activities of two parallel subtrees can occur in any intertwined order; we
expect all possible connections to be present between the child-clusters in the
directly-follows graph. To detect parallelism, the graph is negated: the negated
graph gets no edge between two activities if both directly-follows edges between
these activities are present. If either edge is missing, the negated graph will
contain an edge between these two activities. In this negated graph, the partition
of the parallel cut is the set of connected components.

In a loop, the directly-follows graph must contain a clear set of start and end
activities; all connections between clusters must go through these activities. To
detect a loop cut, first the connected components of the directly-follows graph
are computed, while excluding the start and end activities. Please note that start
and end activities by definition belong to the body of the loop. Second, for each
component reachability is used to determine whether it is directed from a start
activity to an end activity (body part), or directed the other way round (a redo).

4 Process Discovery Using a Directly-Follows Graph

Algorithms using the IM framework guarantee soundness, and some even redis-
coverability, but do not satisfy the single-pass property, as the log is traversed
and even copied during each recursive step. Therefore, we introduce an adapted
framework: Inductive Miner - directly-follows (IMd framework) that recurses
on the directly-follows graph instead of the event log. In this section, we first

Scalable Process Discovery and Conformance Checking 13

a

b

c

e

i

d

h

g

f

9

3

3

3

3

3
3

1 1
1

1

1

1

1 1

6

1
6

3

3

6
3

3

9

Figure 6: Directly-follows graph D1 of L. In a next step, the partition
({a}, {b, c, d, e}, {f, g, h}, {i}), denoted by the dashed lines, will be used.

introduce the IMd framework and a basic algorithm using it. Second, we intro-
duce two more algorithms: one to handle infrequent behaviour; another one that
handles incompleteness.

4.1 Inductive Miner - directly-follows

As a first algorithm that uses the framework, we introduce Inductive Miner -
directly-follows (IMd). We explain the stages of IMd in more detail by means
of an example: Let L be [〈a, b, c, f, g, h, i〉, 〈a, b, c, g, h, f, i〉, 〈a, b, c, h, f, g, i〉,
〈a, c, b, f, g, h, i〉, 〈a, c, b, g, h, f, i〉, 〈a, c, b, h, f, g, i〉, 〈a, d, f, g, h, i〉,
〈a, d, e, d, g, h, f, i〉, 〈a, d, e, d, e, d, h, f, g, i〉]. The directly-follows graph D1 of L
is shown in Figure 6.

Cut Detection. IMd searches for a cut that perfectly matches the characteristics
mentioned in Section 3. As explained, cut detection has been implemented using
standard graph algorithms (connected components, strongly connected compon-
ents), which run in polynomial time, given the number of activities (O(n)) and
directly-follows edges (O(n2)) in the graph.

In our example, the cut (→, {a}, {b, c, d, e}, {f, g, h}, {i}) is selected: as shown
in Figure 5, every edge crosses the cut lines from left to right. Therefore, it
perfectly matches the sequence cut characteristic. Using this cut, the sequence
is recorded and the directly-follows graph can be split.

Directly-Follows Graph Splitting. Given a cut, the IMd framework splits the
directly-follows-graph in disjoint subgraphs. The idea is to keep the internal
structure of each of the clusters of the cut by simply projecting a graph on
the cluster. Figure 7 gives an example of how D1 (Figure 6) is split using the

14 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

sequence cut that was discovered in our example. If the operator of the cut is→
or 	, the start and end activities of a child might be different from the start and
end activities of its parent. Therefore, every edge that enters a cluster is counted
as a start activity, and an edge leaving a cluster is counted as an end activity. In
our example, the start activities of cluster {f, g, h} are those having an incoming
edge not starting in {f, g, h}, and correspondingly for end activities. The result
is shown in Figure 7a. In case of ×, no edges leave any cluster and hence the start
and end activities remain unchanged. In case of ∧, removed edges express the
arbitrary interleaving of activities in parallel clusters; removing this interleaving
information does not change with which activities a cluster may start or end,
thus start and end activities remain unchanged.

The choices for a sequence cut and the split directly-follows graphs are re-
corded in an intermediate tree: →((D2), (D3), (D4), (D5)), denoting a sequence
operator with 4 unknown sub-trees that are to be derived from 4 directly-follows
graphs.

a 99

(a) D2 of {a}

b

c

e

d

3

33

33

3

3

33

3

(b) D3 of {b, c, d, e}

h

g

f

6

33

3 3

33

6

6

(c) D4 of {f, g, h}

i9 9

(d) D5 of {i}

Figure 7: Split directly-follows graphs of D1. The dashed line is used in a next
step and denotes another partition.

Recursion. Next, IMd recurses on each of the new directly-follows graphs (find
cut, split, . . .) until a base case (see below) is reached or no perfectly matching
cut can be found. Each of these recursions returns a process tree, which in turn
can be inserted as a child of an operator identified in an earlier recursion step.

Base Case. Directly-follows graphs D2 (Figure 7a) and D5 (Figure 7d) contain
base cases: in both graphs, only a single activity is left. The algorithm turns
these into leaves of the process tree and inserts them at the respective spot of
the parent operator. In our example, detecting the base cases of D2 and D5

yields the intermediate tree →(a, (D3), (D4), i), in which D3 and D4 indicate
directly-follows graphs that are not base cases and will be recursed on later.

Fall-Through. Consider D4 as, shown in Figure 7c. D4 does not contain uncon-
nected parts, so does not contain an exclusive choice cut. There is no sequence

Scalable Process Discovery and Conformance Checking 15

cut possible, as f , g and h form a strongly connected component. There is no
parallel cut as there are no dually connected parts, and no loop cut as all activit-
ies are start and end activities. Thus, IMd selects a fall-through, being a process
tree that allows for any behaviour consisting of f , g and h (a flower model
	(τ, f, g, h), having the language (f |g|h)∗). The intermediate tree of our ex-
ample up till now becomes →(a, (D3),	(τ, f, g, h), i) (remember that τ denotes
the activity of which the execution is invisible).

Example Continued. InD3, shown in Figure 7b, a cut is present: (×, {b, c}, {d, e}):
no edge in D3 crosses this cut. The directly-follows graphs D6 and D7, shown in
Figures 8a and 8b, result after splitting D3. The tree of our example up till now
becomes →(a,×((D6), (D7)),	(τ, f, g, h), i).

In D6, shown in Figure 8a, a parallel cut is present, as all possible edges cross
the cut, i.e. the dashed line, in both ways. The dashed line in D7 (Figure 8b)
denotes a loop cut, as all connections between {d} and {e} go via the set of start
and end activities {d}. Four more base cases give us the complete process tree
→(a,×(∧(b, c),	(d, e)),	(τ, f, g, h), i).

b

c

3

33

3

33

(a) D6 of {b, c} in D3

e

d
33

3 3

(b) D7 of {d, e} in D3

Figure 8: Split directly-follows graphs. Dashed lines denote cuts, which are used
in the next steps.

To summarise: IMd selects a cut, splits the directly-follows graph and re-
curses until a base case is encountered or a fall-through is necessary. As each
recursion removes at least one activity from the graph and cut detection is O(n2),
IMd runs in O(n3), in which n is the number of activities in the directly-follows
graph.

By the nature of process trees, the returned model is sound. By reasoning
similar to IM [40], IMd guarantees rediscoverability on the same class of models
(see [42, Appendix A]), i.e. assuming that the model is representable by a process
tree without using duplicate activities, and it is not possible to start loops with
an activity they can also end with [40]. This makes IMd the first single-pass
algorithm to offer these guarantees.

4.2 Handling Infrequency and Incompleteness

The basic algorithm IMd guarantees rediscoverability, but, as will be shown in
this section, is sensitive to both infrequent and incomplete behaviour. To solve
this, we introduce two more algorithms using the IMd framework.

16 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

Infrequent Behaviour. Infrequent behaviour in an event log is behaviour that
occurs less frequent than ‘normal’ behaviour, i.e. the exceptional cases. For in-
stance, most complaints sent to an airline are handled according to a model, but
a few complaints are so complicated that they require ad-hoc solutions. This
behaviour could be of interest or not, which depends on the goal of the analysis.

Consider again directly-follows graph D3, shown in Figure 7b, and sup-
pose that there is a single directly-follows edge added, from c to d. Then,
(×, {b, c}, {d, e}) is not a perfectly matching cut, as with the addition of this
edge the two parts {b, c} and {d, e} became connected. Nevertheless, as 9 traces
showed exclusive-choice behaviour and only one did not, this single trace is
probably an outlier and in most cases, a model ignoring this trace would be
preferable.

To handle these infrequent cases, we apply a strategy similar to IMf [43]
and use the IMd framework to define another discovery algorithm: Inductive
Miner - infrequent - directly-follows (IMfD). Infrequent behaviour introduces
edges in the directly-follows graph that violate cut requirements. As a result, a
single edge makes it impossible to detect an otherwise very strong cut. To handle
this, IMfD first searches for existing cuts as described in Section 4.1. If none is
found (when IMd would select a fall through), the graph is filtered by removing
edges which are infrequent with respect to their neighbours. Technically, for a
parameter 0 ≤ h ≤ 1, for an activity a we keep the outgoing edges that occur
more than h times the most occurring outgoing edge of a (a formal definition is
given in [42, Appendix A]). Start and end activities are filtered similarly.

a b

c d

3

21
1

3

2 3

23

2

1
1

1

Figure 9: An incomplete directly-follows graph.

Incompleteness. A log in a “big-data setting” can be assumed to contain lots of
behaviour. However, we only see example behaviour and we cannot assume to
have seen all possible traces, even if we use the rather weak notion of directly-
follows completeness [44] as we do here. Moreover, sometimes smaller subsets
of the log are considered, for instance when performing slicing and dicing in
the context of process cubes [5]. For instance, an airline might be interested in
comparing the complaint handling process for several groups of customers, to
gain insight in how the process relates to age, city and frequent-flyer level of
the customer. Then, there might be combinations of age, city and frequent-flyer

Scalable Process Discovery and Conformance Checking 17

level that rarely occur and the log for these customers might contain too little
information.

If the log contains little information, edges might be missing from the directly-
follows graph and the underlying real process might not be rediscovered. Fig-
ure 9 shows an example: the cut ({a, b}, {c, d}) is not a parallel cut as the edge
(c, b) is missing. As the event log only provides example behaviour, it could be
that this edge is possible in the process, but has not been seen yet. Given this
directly-follows graph, IMd can only give up and return a fall-through flower
model, which yields a very imprecise model. However, choosing the parallel cut
({a, b}, {c, d}) would obviously be a better choice here, providing a better preci-
sion.

To handle incompleteness, we introduce Inductive Miner - incompleteness -
directly-follows (IMcD), which adopts ideas of IMc [44] into the IMd frame-
work. IMcD first applies the cut detection of IMd and searches for a cut that
perfectly matches a characteristic. If that fails, instead of a perfectly matching
cut, IMcD searches for the most probable cut of the directly-follows graph at
hand.

IMcD does so by first estimating the most probable behavioural relation
between any two activities in the directly-follows graph. In Figure 9, the activities
a and b are most likely in a sequential relation as there is an edge from a to b.
a and c are most likely in parallel as there are edges in both directions. Loops
and choices have similar local characteristics. For each pair of activities x and y
the probability Pr(x, y) that x and y are in relation R is determined. The best
cut is then a partition into sets of activities X and Y such that the average
probabilities that x ∈ X and y ∈ Y are in relation R is maximal. For a formal
definition, please refer to [44].

In our example, the probability of cut (∧, {a, b}, {c, d}) is the average prob-
ability that (a, c), (a, d), (b, c) and (b, d) are parallel. IMcD chooses the cut with
highest probability, using optimisation techniques. This approach gives IMcD a
run time exponential in the number of activities, but still requires a single pass
over the event log.

4.3 Limitations

The IMd framework imposes some limitations on process discovery. We dis-
cuss limiting factors on the challenges identified in Section 2: rediscoverability,
handling incompleteness, handling noise and handling infrequent behaviour, and
balancing fitness, precision, generalisation and simplicity.

Limitations on rediscoverability of the IMd framework are similar to the IM
framework: the system must be a process tree and adhere to some restrictions,
and the log must be directly-follows complete (as discussed before). If the sys-
tem does not adhere to the restrictions, then IMd framework will not give up
but rather try to discover as much process-tree like behaviour as possible. For
instance, if a part of the process is sequential, then IMd framework might be
able to discover this, even though the other parts of the process are not block-
structured. Therefore, in practice, such models can be useful [22,16]. To formally

18 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

investigate what happens on non-block structured models would be an interest-
ing subject of further study. For the remaining non-block structured parts, the
flexibility of IMd framework easily allows for future customisations, e.g. [48].

If the log is incomplete, in some cases log-based discovery techniques might
handle this incompleteness better. For instance, take the process tree P1 =
∧(a, b, c) and an event log L = {〈a, b, c〉, 〈c, b, a〉, 〈b, a, c〉, 〈a, c, b〉}. Figure 10a
shows the directly-follows graph of L. Log L is not directly-follows complete
with respect to P1, as the edge (c, a) is missing. Both IM and IMd will first
detect a concurrent cut (∧, {a, c}, {b}). The sub-logs after splitting by IM are
{〈a, c〉, 〈c, a〉} and {〈b〉}, in which the missing directly-follows edge a, c pops up
and enables the rediscovery of P1. In IMd, however, the directly-follows graph
is split, resulting in the directly-follows graph for a, c shown in Figure 10b, from
which P1 cannot be rediscovered. In Section 6, we will illustrate that the effect
of this limitation is limited on larger examples.

a

b

c

(a) directly-follows graph of
L.

a c

(b) after splitting by IMd.

a

c

b

(c) the directly-follows graph
of both P2 and L2.

Figure 10: A directly-follows graph that does not suffice to discover concurrency
where the log does (a, b) and an ambiguous directly-follows graph (c).

If the log contains noise and/or infrequent behaviour, then the IMd frame-
work might choose a wrong cut at some point (as discussed in Section 4.2),
possibly preventing rediscovery of the system. The noise handling abilities of log-
based and directly-follows based algorithms differ in details; in both, noise and
infrequent behaviour manifest as superfluous edges in a directly-follows graph.
On one hand, in IM, such wrong edges might pop up during recursion by reas-
oning similar to the incompleteness case (which could be harmful), while using
the same reasoning, log-based algorithms might have more information available
to filter such edges again (which could be beneficial). In the evaluation, we will
investigate this difference further.

Given an event log, both types of algorithms have to balance fitness, precision,
generalisation and simplicity. For directly-follows based algorithms, this balance
might be different.

For instance, a desirable property of discovery algorithms is the ability to pre-
serve fitness, i.e. to discover a model that is guaranteed to include all behaviour

Scalable Process Discovery and Conformance Checking 19

seen in the event log. For directly-follows based algorithms, this is challenging.
For instance, Figure 10c shows a complete directly-follows graph of the pro-
cess tree P2 = ∧(→(a, b), c). However, it is also the directly-follows graph of
the event log L2 = {〈a, c, b, c, a, b〉, 〈c〉}. Hence, if a fitness-preserving directly-
follows based discovery algorithm would be applied to the directly-follows graph
in Figure 10c, this algorithm could not return P2 and has to seriously under-
fit/generalise to preserve fitness since the behaviour of both needs to be included.
Hence, P2 could never be returned. Therefore, we chose the IMd framework to
not guarantee fitness, while the IM framework by its log splitting indirectly takes
such concurrency dependencies into account. Please note that this holds for any
pure directly-follows based process discovery algorithm (see the limitations of
the α-algorithm). Generalisation, i.e. the likelihood that future behaviour will
be representable by the model, is similarly influenced.

Algorithms of the IM framework can achieve a high log-precision if it can
avoid fall-throughs such as the flower model [43]. Thus, IM framework achieves
the highest log-precision if it can find a cut. The same holds for IMd framework,
and therefore we expect log-precision to largely depend on the cut selection. In
the evaluation, we will investigate log-precision further.

The influence of directly-follows based algorithms on simplicity highly de-
pends on the chosen simplicity measure: both IM framework and IMd framework
return models in which each activity appears once.

5 Comparing Models to Logs and Models

We want to evaluate and compare our algorithm to other algorithms regarding
several criteria.

– First, we want to compare algorithms based on the size of event logs they
can handle, as well as the quality of the produced models. In particular both
recall/fitness and precision (with respect to the given system-model or log)
need to be compared, as trivial models exist that achieve either perfect recall
or perfect precision, but not both.

– Second, we want to assess under which conditions the new algorithms achieve
rediscoverability, i.e. under which conditions the partial or incorrect inform-
ation in the event log allows to obtain a model that has exactly the same
behaviour as the original system that produced the event log. More formally,
under which conditions (and up to which sizes of systems) has the discovered
model the same language as the original system.

Measuring model quality is crucial in typical process mining workflows as
shown in the introduction. However, as discussed in Section 2, existing tech-
niques for measuring model quality (on log or model) cannot handle large and
complex logs and processes. Our technique has to overcome two difficulties: (1)
it has to compute precision and recall of very large, possibly infinite languages;
and (2) it should allow a fine-grained measurement of precision and recall allow-
ing to identify particular activities or behavioural relations where the the model
and the log/other model differ.

20 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

We first introduce this technique for measuring recall and precision of two
models - with the aim of analysing rediscoverability of process mining algorithms
(Section 5.1). Second, we adopt this technique to also compare a discovered
model to a (possibly very large) event log (Section 5.2). We use the techniques
in our evaluation in Section 6.

5.1 Model-Model Comparison

The recall of a model S and a model M describes the part of the behaviour of
S that is captured by M (compare to the conventional fitness notion in process
mining), while precision captures the part of the behaviour of M that is also
possible in S.

For a complex model S and a complex model M , direct language-based com-
parison of the two models by constructing and comparing their state spaces might
suffer from the state explosion problem, and hence be prohibitively expensive.
Therefore, the framework approximates recall and precision by measuring them
on subsets of activities, i.e. we avoid the state explosion problem by considering
small submodels, and averaging over all such subsets. The framework is applic-
able to any process model formalism and process discovery algorithm, as long as
the languages of the models used can be described as deterministic finite auto-
mata (DFAs). We first introduce the general idea of the framework, after which
we describe its steps in more detail.

process model

project on a1 ... akproject on a1 ... ak

DFA DFA

recall
precision

process model

Figure 11: Evaluation framework for process discovery algorithms.

Framework Figure 11 gives an overview of the model-model evaluation frame-
work; formally, the framework takes as input a model S, a model M and an
integer k. S and M must be process models, but can be represented using any
formalism with executable semantics.

To measure recall and precision of S and M , we introduce a parameterised
technique in which k defines the size of the subsets of activities for which recall

Scalable Process Discovery and Conformance Checking 21

and precision shall be computed. Take a subset of activities A = {a1 . . . ak},
such that A ⊆ Σ(M) ∪ Σ(S), and |A| = k. Then, S and M are projected onto
A, yielding S|A and M |A (we will show how the projection is performed below).
From these projected S|A and M |A, deterministic finite automata (DFAs) are
generated, which are compared to quantify recall and precision. These steps are
repeated for all such subsets A, and the average recall and precision over all
subsets is reported.

As we aim to apply this method to test rediscoverability, a desirable property
is that precision and recall should be 1 if and only if L(S) = L(M). Theorem 1,
given later, states that this is the case for the class of process trees used in this
paper.

As a running example, we will compare two models, being a process tree and
a Petri net. Both are shown in Figure 12.

×(∧(a, b),	(c, d))

(a) Process tree S.

a

c

b

(b) Petri net M .

Figure 12: Example models S and M .

In the remainder of this section, we describe the steps of the framework in
more detail after which we give an example and prove Theorem 1.

Projection Many process formalisms allow for projection on subsets of activ-
ities; we give a definition for process trees here and sketch projection for Petri
nets in [42, Appendix E].

A process tree can be projected on a set of activities A = {a1 . . . ak} by
replacing every leaf that is not in A with τ : (in which ⊕ is any process tree
operator)

a|A = if a ∈ A then a else τ

τ |A = τ

⊕(M1 . . .Mn)|A = ⊕(M1|A . . .Mn|A)

After projection, a major problem reduction (and speedup) can be achieved by
applying structural language-preserving reduction rules to the process tree, such
as the rules described in [42, Appendix B].

In principle, any further language preserving state-space reduction rules can
be applied; we will not explore further options in this paper.

If we project our example process tree and Petri net onto activities a and b,
we obtain the models as shown in Figure 13.

22 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

×(∧(a, b),	(τ, τ))

(a) S|a,b.

×(∧(a, b), τ)

(b) S|a,b reduced.

a

b

(c) M |a,b.

Figure 13: Example models S and M projected/reduced.

Process Model to Deterministic Finite Automaton An automaton de-
scribes a language based on an alphabet Σ. The automaton starts in its initial
state; from each state, transitions labelled with activities from Σ denote the pos-
sible steps that can be taken from that state. A state can be an accepting state,
which denotes that a trace which execution ends in that state is accepted by
the automaton. An automaton with a finite set of states is a non-deterministic
finite automaton (NFA). In case that the automaton does not contain a state
from which two transitions with the same activity leave, the automaton is a
deterministic finite automaton (DFA). Each NFA can be translated into a DFA
and a language for which a DFA exist is a regular language; for each DFA, there
exists a reduced unique minimal version [47].

Process tree are defined using regular expressions in [42, Appendix A], which
can be transformed straightforwardly into an NFA (we used the implementa-
tion [49], which provides a shuffle-operator). Secondly, a simple procedure trans-
forms the NFA into a DFA [47].

The translation of our example S|{a,b} and M |{a,b} to DFAs results in the
automata shown in figures 14a and 14b.

s1 s2

s3s4

a

bb

a

(a) DFA(S|{a,b}).

m1 m2

m3

a

b
b

(b) DFA(M |{a,b}).

s1m1 s2m2

s3m3

a

b

(c) DFAc(S,M, {a, b}).

Figure 14: DFAs for S and M projected to {a, b} and reduced, and their con-
junction.

Comparing Deterministic Finite Automata Precision is defined as the
part of behaviour in M |A that is also in S|A. Therefore, first the conjunction

Scalable Process Discovery and Conformance Checking 23

Table 1: Outgoing edge counting of our running example.
recall for activity subset {a, b}

state in DFA(S|{a,b}) outgoing edges state in DFAc(S,M, {a, b}) outgoing edges

s1 3 s1m1 1
s2 1 s2m2 1
s3 1 s3m3 1
s4 1 - 0

precision for activity subset {a, b}
state in DFA(M |{a,b}) outgoing edges state in DFAc(S,M, {a, b}) outgoing edges

m1 2 s1m1 1
m2 1 s2m2 1
m3 1 s3m3 1

DFA(S|A)∩DFA(M |A) (which we abbreviate to DFAc(S,M,A)) of these DFAs is
constructed, which accepts the traces accepted by both S|A and M |A. Figure 14c
shows the conjunctive DFA of our running example. Then, precision is measured
similarly to several existing precision metrics, such as [8]: we count the outgoing
edges of all states in DFA(M |A), and compare that to the outgoing edges of the
corresponding states (s,m) in DFAc(S,M,A) (for ease of notation, we consider
an automaton as a set of states here):

precision(S,M,A) =∑
m∈DFA(M |A)

∑
(s,m)∈DFAc(S,M,A) outgoing edges of (s,m) in DFAc(S,M,A)∑

m∈DFA(M |A)

∑
(s,m)∈DFAc(S,M,A) outgoing edges of m in DFA(M |A)

If DFA(M |A) has no edges at all (i.e. describes the empty language), we define

precision(S,M,A) =

{
0 if DFAc(S,M,A) has edges

1 if DFAc(S,M,A) has no edges

Please note that we count acceptance as an outgoing edge, and that states may
be counted multiple times if they are used multiple times in DFAc. Recall is
defined as the part of behaviour in S|A that is not in M |A, i.e. recall(S,M,A) =
precision(M,S,A). In our example (see Table 1), recall for (a, b) is 1+1+1

3+1+1+1 =

0.5; precision is 1+1+1
2+1+1 = 0.75.

Over all activities For an alphabet Σ, finally the previous steps are repeated
for each set of activities {a1 . . . ak} ⊆ Σ of size k and the results are averaged:

recall(S,M, k) =

∑
A⊆Σ(S)∪Σ(M)∧|A|=k recall(S,M, a1 . . . ak)

|{A ⊆ Σ(S) ∪Σ(M) ∧ |A| = k}|

precision(S,M, k) = recall(M,S, k)

24 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

Note that we assume a closed-world here, i.e. the alphabet Σ is assumed to
be the same for S and M . If an activity is missing from M , we therefore consider
M to express that the activity can never happen.

Framework Guarantees Using these definitions, we prove that the framework
is able to detect language equivalence between process trees of the class that can
be rediscovered by IM and IMd. This theorem will be useful in later evaluations,
where from recall and precision being 1, we can conclude that the system was
rediscovered.

Theorem 1. Let S and M be process trees without duplicate activities and
without τs. Then, recall(S,M, 2) = 1∧precision(S,M, 2) = 1⇔ L(S) = L(M).

The proof strategy is to prove the two directions of the implication separ-
ately, using that for such trees, there exists a language-unique normal form [40,
Corollary 15]. For a detailed proof, see [42, Appendix C]. As for sound free-choice
unlabeled workflow nets without short loops the directly-follows graph defines a
unique language [57], Theorem 1 applies to these nets as well.

Corollary 2. Let S and M be sound free-choice unlabelled workflow nets without
short loops. Then, recall(S,M, 2) = 1∧precision(S,M, 2) = 1⇔ L(S) = L(M).

Unfortunately, this theorem does not hold for general process trees. For in-
stance, take S = ×(a, b, c, τ) and M = ×(a, b, c). For k = 2, the framework will
consider the subtrees ×(a, b, τ), ×(a, c, τ) and ×(b, c, τ) for both S and M , thus
will not spot any difference: recall = 1 and precision = 1, even though the
languages of S and M are clearly different. Only for k = 3, the framework will
detect the difference.

In Section 6, we use the algorithm framework to test incompleteness, noise
and infrequent behaviour on large models. Before that, we first show that the
ideas of the framework can also be used to compare models to event logs.

5.2 Log-Model Comparison

In order to evaluate models with respect to event logs, the framework in Sec-
tion 5.1 is adapted as follows: Figure 15 shows an overview: the framework
starts from an event log L and a model M (in a process mining setting, M
would have been discovered from L). First, L and M are projected on a set
of activities A. A log is projected by removing the non-projected events, e.g.
{〈a, b, c〉, 〈c, d〉}|{a,b} = {〈a, b〉, 〈 〉}. Second, from both projections a DFA is con-
structed. Precision is computed as in Section 5.2, i.e. by comparing DFA(L|A)
and DFA(M |A). For fitness, it is desirable that the frequencies of traces are taken
into account, such that a trace that appears 10,000 times in L contributes more
to the fitness value than a trace that appears just once. Therefore, we compute
fitness as the fraction of traces of L|A that can be replayed on DFA(M |A):

fitness(L,M,A) =
|[t ∈ L|A|t ∈ DFA(M |A)]|

|L|A|

Scalable Process Discovery and Conformance Checking 25

event log process model

project on a1 ... akproject on a1 ... ak

DFA

�tnessprecision

DFA

Figure 15: Evaluation approach for logs vs models.

If the log contains no traces, we define fitness to be 1.
Note that L is a multiset: if a trace appears multiple times in L, it contrib-

utes multiple times as well. This is repeated for all subsets of activities A of a
certain length k, similarly to the model-model comparison. Note that besides a
fitness/precision number, the subsets A also provide clues where deviations in
the log and model occur.

6 Evaluation

To understand the impact of “big data” event logs on process discovery and
quality assessment, we conducted a series of experiments to answer the following
research questions:

RQ1 What is the largest event log (number of events/traces or number of activ-
ities) that process discovery algorithms can handle?

RQ2 Are single-pass algorithms such as the algorithms of the IMd framework
able to rediscover the system? How large do event logs have to be in order
to enable this rediscovery? How do these algorithms compare to classical
algorithms?

RQ3 Can the system also be rediscovered if an event log contains unstructured
noise or structured infrequent behaviour? How does model quality of the
newly introduced algorithms suffer compared to other algorithms?

RQ4 Can pcc framework handle logs that existing measures cannot handle? How
do both sets of measures compare on smaller logs?

26 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

To answer the first three questions, we conducted four similar experiments, as
shown in Figure 16: we choose a system, generate an event log and discover a
process model, after which we measure how well the discovered model represents
the system using log-precision and recall. Of these experiments, one focuses
on scalability, i.e. the ability in handling big event logs and complex systems
(Section 6.1); handling incompleteness (Section 6.2), handling noise (Section 6.3)
and handling infrequent behaviour (Section 6.4).

event log process modelsystem

discovergenerate

recall
log-precision

Figure 16: Set-up of our evaluation.

To answer RQ4, we conducted another experiment: we use real-life logs, apply
discovery algorithms and measure fitness and log-precision, using both the pcc
framework and existing measures (Section 6.5). All algorithms of the IMd frame-
work and pcc framework are implemented as plug-ins of the ProM framework1,
taking as input a directly-follows graph. Directly-follows graphs were generated
using an external Python script. For more details on the set-up, please refer to
[42, Appendix D].

6.1 Scalability of IMd vs Other Discovery Algorithms

First, we compare the IMd algorithms with several other discovery algorithms
in their ability to handle big event logs and complex systems using limited main
memory.

Set-up. All algorithms were tested on the same set of XES event logs, which
have been created randomly from three process trees, of (A) 40 activities, (B)
1,000 activities and (C) 10,000 activities. The three trees have been generated
randomly.

For each tree, we first generate a random log of t traces, starting t at 1.
Second, we test whether an algorithm returns a model for that log when allocated
2GB of main memory, i.e. the algorithm terminates with a result and does not
crash. If successful, we multiply t by 10 and repeat the procedure. The maximum
t is recorded for each algorithm and process tree A, B and C.

1 Available for download at http://promtools.org

Scalable Process Discovery and Conformance Checking 27

Besides the new algorithms introduced in this paper, the following algorithms
were included in the experiment:

α-algorithm (α) [7] ProM 6.5.1a
Heuristics Miner (HM) [60] ProM 6.5.1a
Integer Linear Programming (ILP) [63] ProM 6.5.1a
immediately follows cnet from log (P-IF) [24] PMLAB
pn from ts (P-PT) [24] PMLAB
Inductive Miner (IM) [40] ProM 6.5.1a
Inductive Miner - infrequent (IMf) [43] ProM 6.5.1a
Inductive Miner - incompleteness (IMc) [44] ProM 6.5.1a
IM - directly-follows (IMd) this paper ProM 6.5.1a
IM - infrequent - directly-follows (IMfD) this paper ProM 6.5.1a
IM - incompleteness - directly-follows (IMcD) this paper ProM 6.5.1a

The soundness-guaranteeing algorithms ETM, CCM and MPM were not in-
cluded, as ETM is a non-deterministic algorithm and there is no implementation
available for CCM and MPM. It would be interesting to test these as well.

Event Logs. The complexities of the event logs are shown in Table 2; they were
generated randomly from trees A, B or C. From this table, we can deduce that
the average trace length in (A) is 37 events, in (B) 109 and in (C) 764; [42,
Appendix F] shows additional statistics. Thus, the average trace length increases
with the number of activities.

The largest log we could generate for A was 217GB (108 traces), limited by
disk space. For the trees B and C, the largest logs we could generated were 106

and 105 traces, limited by RAM. For the bigger logs, the traces were directly
transformed into a directly-follows graph and the log itself was not stored. In
Table 2, these logs are marked with *.

Compared with [41], tree B was added and the logs of trees A and C were
regenerated. Therefore, the log generated for these trees are slightly different
from [41]. However, the conclusions were not influenced by this.

Results. Table 3 shows the results. Results that could not be obtained are marked
with * (for instance, IMc and IMcD ran for over a week without returning a
result).

This experiment clearly shows the scalability of the IMd framework, which
handles larger and more complex logs easily (IMd and IMfD handle 108

traces, 7 ∗ 1010 events and 104 activities). Moreover, it shows the inability of ex-
isting approaches to handle larger and complex logs: the most scalable other
algorithms were IM and IMf, that both handled only 1,000 traces. Furthermore,
it shows the limited use sampling would have on such logs (logs manageable for
other algorithms, i.e. 1,000 traces for tree C, do not contain all activities yet).
We discuss the results in detail in [42, Appendix G].

Time. Timewise, it took a day to obtain a directly-follows graph from the log of
108 traces of tree A, (using the pre-processing Python script) after that discover-
ing a process model was a matter of seconds for IMd and IMfD. For the largest

28 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

Table 2: log complexity (* denotes that a directly-follows graph was generated).
A: 40 activities B: 1,000 activities C: 10,000 activities

complex more complex
traces events activities events activities events activities

1 21 21 190 52 81 66
10 309 40 922 359 8,796 1,932

102 3,567 40 9,577 802 77,664 7,195
103 37,415 40 112,821 973 780,535 9,589
104 370,687 40 1,106,495 999 7,641,398 9,991
105 3,697,424 40 10,908,461 1,000 76,663,981 10,000
106 36,970,718 40 109,147,057 1,000 764,585,193 *10,000
107 369,999,523 40 1,090,802,965 *1,000 7,644,466,866 *10,000
108 3,700,046,394 40 10,908,051,834 *1,000 76,477,175,661 *10,000

Table 3: scalability: maximum number of traces an algorithm could handle.
A: 40 activities B: 1,000 activities C: 10,000 activities

traces traces traces

α 10,000 100 1
HM 1,000,000 1,000,000 1
ILP 1,000 100 1
P-IF 10,000 *0 *1
P-PT 10,000 *0 *1
IM 100,000 100,000 1,000
IMd 100,000,000 100,000,000 100,000,000
IMf 100,000 100,000 1,000
IMfD 100,000,000 100,000,000 100,000,000
IMc † 100,000 1 *10
IMcD † 100,000,000 1 *10

logs they could handle, P-IF, α, HM, IM, IMf and IMc took a few minutes;
P-PT took days, ILP a few hours. In comparison, on the logs that ILP could
handle, creating a directly-follows graph took a few seconds, just as applying
IMd.

6.2 The Influence of Incompleteness on Rediscoverability

To answer RQ2, i.e. whether single-pass algorithms are able to rediscover the
system, how large logs need to be in order to enable rediscovery, and how these
algorithms compare to classical algorithms, we performed a second experiment.
In complex processes, such as B and C, information can be missing from logs
if the logs are not large enough: Table 2 shows that in our example, 105 traces
were necessary for B to have all activities appear in the log.

Set-up. For each model generated in the scalability experiment, we measure
recall and precision with respect to tree A, B or C using the pcc framework.

Scalable Process Discovery and Conformance Checking 29

Given the results of the scalability experiment, we include the algorithms IM,
IMf, IMc, HM, IMd, IMfD, IMcD, and a baseline model allowing for any
behaviour (a flower model).

As HM does not guarantee to return a sound model, nor provides a final
marking, we obtain a final marking using the method described in [42, Ap-
pendix E]. However, even with this method we were unable to determine the
languages of the models returned by HM, thus these were excluded.

Results. Figure 17 shows that for model A (40 activities) both IM and IMd
rediscover the language of A (a model that has 1.0 model-precision and recall
with respect to A) on a log of 104 traces. IMd could rediscover the language of B
at 108 traces, IM did not succeed as the largest log it could handle (105 traces)
did not contain enough information to rediscover the language of B. The largest
log we generated for tree C, i.e. containing 108 traces, did not contain enough
information to rediscover the language of C: IMfD discovered a model with a
recall of running. . . and a model-precision of running. . . . Corresponding results
have been obtained for IMf/IMfD and IMc/IMcD; see [42, Appendix H] for
all details. The flower model provided the baseline for precision: it achieved recall
1.0 at 101 (A) and 102 (B) traces, and achieves a model-precision of 0.8.

100 102 104 106
0

0.2

0.4

0.6

0.8

1

number of traces

re
ca

ll
/
p
re

ci
si

o
n

IM

100 102 104 106
0

0.2

0.4

0.6

0.8

1

number of traces

IMd

recall; precision

Figure 17: Incompleteness results for process tree A (40 activities).

We conclude that algorithms of the IMd framework are capable of rediscov-
ering the original system, even in case of very large systems (trees B and C), and
that these algorithms do not require larger logs than other algorithms to do so:
IM and IMd rediscovered the models on logs of the same sizes; for smaller logs
IMd performed slightly better than IMfD. Overall, IMd and IMfD have a sim-
ilar robustness to incomplete event logs as their IM counterparts, which makes
them more robust than other algorithms as well [44]. We discuss the results in
detail in [42, Appendix G].

30 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

100 103 106 109
0

0.2

0.4

0.6

0.8

1

number of traces

re
ca

ll
/
p
re

ci
si

o
n

IM

100 103 106 109
0

0.2

0.4

0.6

0.8

1

number of traces

IMd

recall; precision

Figure 18: Incompleteness results for process tree B (1000 activities).

6.3 The Influence of Noise on Rediscoverability

To answer RQ3, we tested how noise in the event log influences rediscovery. We
took the event log of 104 traces of tree B, as that log was well-handled by several
algorithms but did not reach perfect recall and precision in the incompleteness
experiment, indicating that discovery is possible but challenging. To this 104

traces, we add n noisy traces with some noise, for 10-fold increasing n from 1 to
105, i.e. the logs have 10,001 to 110,000 traces. A noisy trace is obtained from a
normal trace by adding or removing a random event (both with 0.5 probability).
By the representational bias of the process trees used in the generation, such a
trace is guaranteed to not fit the original model. To each of these logs, we applied
IM, IMf, IMd and IMfD and measured recall and precision with respect to the
unchanged system B. No artificial RAM limit was enforced.

Notice that when 105 noisy traces are added, only 9% of the traces remains
noise free. The directly-follows graph of this noisy log contains 118,262 directly-
follows edges, while the graph of the model would just have 32,012. Moreover,
almost all activities are observed as start activities (946) and end activities
(929) in this log (vs 244/231 in the model). It is clear that without serious noise
filtering, no algorithm could make any sense of this log.

Results. Figure 19 compares the 2 noise filtering algorithms IMf and IMfD on
the logs of B with various noise levels. Surprisingly, IMfD performs better than
IMf: IMfD achieves consistently higher precision at only slight drop in recall
compared to IMf whose precision drops to 0.8, which is close to the flower model
(i.e., no actual restriction of behaviour). The perfect recall obtained by IM on
large lots can be explained by the fall-throughs of IMd and IM: if no cut can
be found, a flower model is selected. For IM and IMd, we consistently observed
lower precision scores for all models compared to both IMf and IMfD but a
consistent fitness of 1.0 (which is easily explained by their lack of noise handling
capabilities); exact numbers and more details are available in [42, Appendix H].

Scalable Process Discovery and Conformance Checking 31

100 101 102 103 104 105
0

0.2

0.4

0.6

0.8

1

noisy traces added

re
ca

ll
/
p
re

ci
si

o
n

IMf 0.2

100 101 102 103 104 105
0

0.2

0.4

0.6

0.8

1

noisy traces added

IMfD 0.2

recall; precision

Figure 19: Algorithms applied to logs with noisy traces (tree B (1,000 activities)).

A manual inspection of the models returned shows that all models still give
information on the overall structure of the system, while for larger parts of the
model no structure could be discovered and a flower sub-model was discovered.
In this limited experiment, IMfD is the clear winner: it keeps precision highest
in return for a little drop in recall. We suspect that this is due to IMfD using
less information than IMf and therefore the introduced noise has a larger impact
(see Section 4.3). More experiments need to evaluate this hypothesis.

6.4 The Influence of Infrequent Behaviour on Rediscoverability

To answer the second part of RQ3 we investigated how infrequent behaviour,
i.e. structured deviations from the system, influences rediscovery. The set-up of
this experiment is similar to the noise experiment, i.e. t deviating traces are
added. Each deviating trace contains one structural deviation from the model,
e.g. for an ×, two children are executed. For more details, please refer to [42,
Appendix D].

Similar to the noise experiment, the log with 105 added infrequent traces
has a lot of wrong behaviour: without infrequent behaviour, its directly-follows
graph would contain 32, 012 edges, 244 start activities and 231 end activities,
but the deviating log contained 118, 262 edges, 946 start activities and 929 end
activities. That means that if one would randomly pick an edge from the log,
there would be only 27% chance that the chosen edge would be according to the
model. Exact numbers and more details are available in [42, Appendix H].

Results. Figure 20 shows the results of IMf and IMfD on logs of process tree
B with various levels of added infrequent behaviour. Similar to the noise exper-
iments, IMfD compared to IMf trades recall (0.95 vs 0.99) for log-precision
(0.95 vs 0.90). Of the non-filtering versions IM and IMd, both got a recall of
0.99, IM a model-precision of around 0.90, and IMd 0.92, thus IMd performs a
bit better in this experiment.

32 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

100 101 102 103 104 105
0

0.2

0.4

0.6

0.8

1

infrequent traces added

re
ca

ll
/
p
re

ci
si

o
n

IMf 0.2

100 101 102 103 104 105
0

0.2

0.4

0.6

0.8

1

infrequent traces added

IMfD 0.2

recall; precision

Figure 20: Infrequent behaviour results of process tree B (1000 activities).

We suspect that two of the inserted types of infrequent behaviour might be
of influence here: skipping a child of a→ or ∧ has no troublesome impact on the
directly-follows graph for the IM framework, but log splitting will introduce a
(false) empty trace for the IM framework; IM framework algorithms must decide
to ignore this empty trace in later recursions, while IMd framework algorithms
simply don’t see it. Altogether, IMfD performs remarkably well and stable in
this typical case of process discovery where an event log contains structured
deviations from the system.

6.5 Real-Life Model-Log Evaluation

To test real-life performance of the new algorithms and to answer RQ4, i.e.
whether the newly introduced fitness and precision measures can handle larger
logs and how they compare to existing measures, we performed a fourth experi-
ment.

Experimental Set-up. In this experiment, we take four real-life event logs.
To these event logs, we apply the algorithms α, HM, IM, IMf, IMd and IMfD
and analyse the resulting models manually. The algorithms CCM and MPM are
not publicly available and were excluded.

Secondly, in order to evaluate the pcc framework, we apply the pcc frame-
work and existing fitness [1] and log-precision [10] measures to the discovered
models. The models by HM and α were unsound and had to be excluded (our
unsoundness-handling tricks in [42, Appendix E] brought no avail). Furthermore,
IM and IMd do not apply noise filtering and therefore their models are often
flower models, so these were excluded as well.

To provide a baseline for log-precision, we add a flower model to the com-
parison: a flower model allows for all behaviour, so intuitively has the worst

Scalable Process Discovery and Conformance Checking 33

precision. Therefore, we scale (normalised) the log-precision according to this
baseline:

scaled log-precision = 1− 1− log-precision of model

1− log-precision of flower model

Intuitively, scaled precision denotes the linear precision gain with respect to a
flower model, i.e. 0 for the flower model itself and 1 for perfect precision. The pcc
framework-fitness measure and the existing fitness measure [1] are conceptually
similar, so they are not scaled.

Logs. We analysed four real-life logs. The first log (BPIC11) originates from
the emergency department of a Dutch hospital [28]. BPIC11 describes a fairly
unstructured process, and contains 624 activities, 1,143 traces (patients) and
150,291 events. In our classification, it is a complex and medium log. The
second log (BPIC12) originates from a Dutch financial institution, and describes
a mortgage application process [29]. It contains 23 activities, 13,087 traces (cli-
ents) and 164,506 events, and is therefore a medium log. BPIC12 was filtered to
only contain events having the “complete” life cycle transition, i.e. “schedule”
and “start” events were removed. The resulting log was included, as well as three
activity-subsets: activities prefixed by respectively A, O or W (BPIC|A, BPIC|O
and BPIC|W). The third log (SL) originates from the repeated execution of soft-
ware: SL was obtained by recording method calls executed by RapidMiner, using
5 operators, each corresponding to plug-ins of RapidProM. The recording was
performed using the Kieker tool (see http://kieker-monitoring.net), and re-
peated 25 times with different input event logs. In total, the event log (SL) has
25 traces, 5,869,492 events and 271 activities, which makes it a large. Its traces
are particularly long: up to 1,151,788 events per trace. The fourth log (CS) ori-
ginates from a web-site of a dot-com start-up, and represents click-stream data,
i.e. every web-site visitor is a trace, and each page visited is an events [37]. CS
contains 77,513 traces, 358,278 events and 3,300 activities, which makes it more
complex and medium. As described in the introduction, much bigger event logs
exist. We were able to run IMd and IMfD on larger and more complex logs,
but we were unable to compute metrics or even visualise the resulting models.
Therefore, we do not report on such logs in this evaluation.

Results for Process Discovery. The first step in this experiment was to apply
several process discovery algorithms.

On BPIC11, IM, IMf, IMd and IMfD produced a model.
On BPIC12, all the algorithms produced a model. We illustrate the results

of the experiments on BPIC12, filtered for activities starting with A (BPIC|A):
Figure 21 shows the model returned by IMf; Figure 22 the model by IMfD.
This illustrates the different trade-offs made between IM and IMd: these models
are very similar, except that for IMf, three activities can be skipped. Operating
on the directly-follows abstraction of the log, IMfD was unable to decide to

34 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

make these activities skippable, which lowers fitness a bit (0.816 vs 0.995) but
increases precision (1 vs 0.606).

Figure 21: IMf applied to BPIC12|A (without activity names).

Figure 22: IMfD applied to BPIC12|A (without activity names).

On the SL log, HM, IM, IMf, IMd and IMfD produced a model, and α could
not proceed beyond passing over the event log. The models discovered by HM,
IMf and IMfD are shown in Figure 23 (we uploaded these models to http://

www.processmining.org/blogs/pub2015/scalable_process_discovery_and_

evaluation; these can be drag-and-dropped onto ProM to be visualised). The
model discovered by HM has 2 unconnected parts, of which one is not contained
in the initial marking. Hence it is not a workflow model, thus not sound and, as
discussed before, difficult to be analysed automatically. In the models discovered
IMf and IMfD, the several RapidProM operators are easily recognisable. How-
ever, the models are too complex to be analysed in detail by hand2 Therefore,
in further analysis steps, problematic parts of the models by IMf and IMfD
could be identified, the log filtered for them, and the analysis repeated.

On the CS log, IM, IMf, IMd and IMfD produced a model. IMd and IMfD
returned a model in less than 30 seconds using less than 1GB of RAM, while
IM and IMf took more than an hour and used 30GB of RAM. As CS has five
times more activities than SL, we could not visualise it. This illustrates that
scalable process discovery is a first step in scalable process mining: the models
we obtained are suitable for automatic processing, but human analysis without
further visualisation techniques is very challenging.

Results for Log-Conformance Checking. Table 4 shows the results, exten-
ded with the approximate running time of the techniques.

2 Anecdotically: the vector-images of these models were too large to be displayed by
Adobe Illustrator or Adobe Acrobat.

Scalable Process Discovery and Conformance Checking 35

(a) Impression of the model discovered by HM.

(b) Impression of the model discovered by IMf.

(c) Impression of the model discovered by IMfD.

Figure 23: Models discovered from a software execution log.

Fitness scores according to the pcc framework differ from the fitness scores
by [1] by at most 0.05 (except for BPIC12|A IMfD). Thus, this experiment
suggests that the new fitness measurement could replace the alignment-based
fitness [1] metric, while being generally faster on both smaller and larger logs,
though additional experiments may be required to verify this hypothesis. More
importantly, the pcc framework could handle logs (BPIC11, SL, CS) that the
existing measure could not handle.

Comparing the scaled precision measures, the pcc framework and the exist-
ing approach agree on the relative order of IMf and IMfD for BPIC12|A and
BPIC12|O, disagree on BPIC12 and are incomparable on BPIC11, SL and CS due
to failure of the existing measure. For BPIC12|W , IMfD performed worse than
the flower model according to [10] but better according to our measure. This
model, shown in Figure 24, is certainly more restrictive than a flower model,
which is correctly reflected by our new precision measure. Therefore, likely the
approach of [10] encounters an inaccuracy when computing the precision score.
For BPIC12, precision [10] ranks IMf higher than IMfD, whereas our preci-
sion ranks IMfD higher than IMf. Inspecting the models, we found that IMf
misses one activity from the log while IMfD has all activities. Apparently, our
new measure penalises more for a missing activity, while the alignment-based
existing measure penalises more for a missing structure.

A similar effect is visible for SL: IMf achieves a lower precision than the
flower model. Further analysis revealed that several activities were missing from

36 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

Table 4: Log-measures compared on real-life logs.
existing techniques this paper (pcc framework)

fitness log-precision [10] time fitness log-precision time
[1] measured scaled measured scaled

BPIC11 IMf out of memory 0.627 0.764 0.472 25s
IMfD out of memory 0.997 0.766 0.477 1m
flower 1.000 0.002 0.000 5h 1.000 0.553 0.000 25s

BPIC12|A IMf 0.995 0.606 0.940 ≤1s 0.999 0.967 0.931 ≤1s
IMfD 0.816 1.000 1.000 ≤1s 0.700 1.000 1.000 ≤1s
flower 1.000 0.227 0.000 ≤1s 1.000 0.520 0.000 ≤1s

BPIC12|O IMf 0.991 0.508 0.351 ≤1s 0.981 0.809 0.407 ≤1s
IMfD 0.861 0.384 0.187 ≤1s 0.862 0.794 0.360 ≤1s
flower 1.000 0.242 0.000 ≤1s 1.000 0.678 0.000 ≤1s

BPIC12|W IMf 0.876 0.690 0.553 ≤1s 0.875 0.836 0.611 ≤1s
IMfD 0.914 0.300 -0.010 ≤1s 0.923 0.823 0.581 ≤1s
flower 1.000 0.307 0.000 ≤1s 1.000 0.578 0.000 ≤1s

BPIC12 IMf 0.967 0.364 0.290 20m 0.978 0.668 0.092 ≤1s
IMfD 1.000 0.189 0.095 25m 1.000 0.693 0.161 ≤1s
flower 1.000 0.104 0.000 30m 1.000 0.634 0.000 ≤1s

SL IMf out of memory 0.584 0.246 -0.158 30m
IMfD out of memory 0.924 0.385 0.055 30m
flower out of memory 1.000 0.349 0.000 35m

CS IMf out of memory 0.999 0.580 0.023 1h
IMfD out of memory 0.999 0.585 0.036 6.5h
flower out of memory 1.000 0.570 0.000 55m

the model by IMf. The following example illustrates the effect: let L = {〈a, b〉}
be a projected log and M = a a projected model. Then, technically, their con-
junction is empty and hence both precision and recall are 0. This matches intu-
ition, as they have no trace in common. This sensitivity to missing activities is
inherent to language-based measuring techniques. From the model discovered by
IMf, 45 activities are missing, which means that of the 36,585 pairs of activities
that are considered for precision and recall, in 11,160 pairs a missing activity is
involved.

Figure 24: IMfD applied to BPIC|W .

Scalable Process Discovery and Conformance Checking 37

This experiment does not suggest that our new measure can directly replace
the existing measure, but precision seems to be able to provide a categorisation,
such as good/mediocre/bad precision, compared to the flower model.

Altogether we showed that our new fitness and precision metrics are useful
to quickly assess the quality of a discovered model and decide whether to con-
tinue analyses with it or not, in particular on event logs that are too large for
current techniques. In addition to simply providing an aggregated fitness and
precision value, both existing and our new technique allow for more fine-grained
diagnostics of where in the model and event log fitness and precision are lost.
For instance, by looking at the subsets a1 . . . ak of activities with a low fitness or
precision score, one can identify the activities that are not accurately represented
by the model, and then refine the analysis of the event log accordingly.

On most of the event logs, IMfD seems to perform comparably to IMf.
However, please notice that by the nature of fitness and log-precision, for each
event log there exists a trivial model that scores perfectly on both, i.e. the model
consisting of a choice between all traces. As such a model provides neither any
new information nor insight, generalisation and simplicity have to be taken into
account as well. As future work, we would like to adapt generalisation metrics
to be applicable to large event logs and complex processes as well.

7 Conclusion

Process discovery aims to obtain process models from event logs, while conform-
ance checking aims to obtain information from the differences between a model
and either an event log or a system-model. Currently, there is no process discov-
ery technique that works on larger and more complex logs, i.e. containing
billions of events or thousands of activities, and that guarantees both soundness
and rediscoverability. Moreover, current log-conformance checking techniques
cannot handle medium and complex logs, and as current process discovery
evaluation techniques are based on log-conformance checking, algorithms can-
not be evaluated for medium and complex logs. In this paper, we pushed the
boundary on what can be done with larger and more complex logs.

For process discovery, we introduced the Inductive Miner - directly-follows
(IMd) framework and three algorithms using it. The input of the framework
is a directly-follows graph, which can be obtained from any event log in lin-
ear time, even using highly-scalable techniques such as Map-Reduce. The IM
framework uses a divide-and-conquer strategy that recursively builds a process
model by splitting the directly-follows graph and recursing on the sub-graphs
until encountering a base case.

We showed that the memory usage of algorithms of the IMd framework is
independent of the number of traces in the event log considered. In our experi-
ments, the scalability was only limited by the logs we could generate. The IMd
framework managed to handle over 70 billion events, while using only 2GB of
RAM; some other techniques required the event log to be in main memory and
therefore could handle at most 1 - 10 million events. Besides scalability, we also

38 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

investigated how the new algorithms compare qualitatively to existing techniques
that use more knowledge, but also have higher memory requirements. The new
algorithms handled systems of 10,000 activities in polynomial time, and were ro-
bust to incompleteness, noise and infrequent behaviour. Moreover, they always
return sound models and suffered little loss in quality compared to multi-pass
algorithms; in some cases we even observed quality improvements.

For conformance checking, we introduced the projected conformance checking
framework (pcc framework), that is applicable to both log-model and model-
model conformance checking. The pcc framework measures recall/fitness and
precision, by projecting both system and system-model/log onto subsets of activ-
ities to determine their recall/fitness and precision. Using this framework, one
can measure recall/fitness and precision of arbitrary models with a bounded
state space of (almost) arbitrary size.

The pcc framework’s model-model capabilities enable a novel way to evaluate
discovery techniques that scales well and provides new insights. We applied this
to test robustness of various algorithms to incompleteness, noise and infrequent
behaviour. Moreover, we showed that the log-model version of the pcc framework
allows to measure fitness and precision of a model with respect to an event log,
even in cases where classical techniques fail, and can give detailed insights into
the location of deviations in both log and model.

Altogether, we have presented the first steps of process mining workflows on
very large data sets: discovering a model and assessing its quality. However, as
we encountered in our evaluation, we envision further steps in the processing
and visualisation of large models, such as using natural language based tech-
niques [12]. To ease the analyses in contexts of big data, our algorithm evalu-
ation framework could be combined with the approach in [15], by having our
framework detecting the problematic sets of activities, and the approach in [15]
focusing on these sub-models.

Furthermore, it would be interesting to study the influence of k on the pcc
framework, both practically and theoretically. As shown in Section 5.1, there
exist cases for which the language equivalence can only be guaranteed if k is at
least the number of nodes minus one. However, besides for the classes for which
Theorem 1 or Corollary 2 holds, there might be other classes of models for which
a smaller k suffices.

References

1. van der Aalst, W., Adriansyah, A., van Dongen, B.: Replaying history on process
models for conformance checking and performance analysis. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery 2(2), 182–192 (2012)

2. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and En-
hancement of Business Processes. Springer (2011), http://dx.doi.org/10.1007/
978-3-642-19345-3

3. van der Aalst, W.M.P.: Decomposing process mining problems using pas-
sages. In: Petri Nets 2012. pp. 72–91 (2012), http://dx.doi.org/10.1007/

978-3-642-31131-4_5

Scalable Process Discovery and Conformance Checking 39

4. van der Aalst, W.M.P.: Decomposing Petri nets for process mining: A generic
approach. Distributed and Parallel Databases 31(4), 471–507 (2013), http://dx.
doi.org/10.1007/s10619-013-7127-5

5. van der Aalst, W.M.P.: Process cubes: Slicing, dicing, rolling up and drilling down
event data for process mining. In: AP-BPM 2013. pp. 1–22 (2013), http://dx.

doi.org/10.1007/978-3-319-02922-1_1

6. van der Aalst, W.M.P., et al.: Process mining manifesto. In: Business Process
Management Workshops 2011. pp. 169–194 (2011), http://dx.doi.org/10.1007/
978-3-642-28108-2_19

7. van der Aalst, W., Weijters, A., Maruster, L.: Workflow mining: Discovering pro-
cess models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142
(2004)

8. Adriansyah, A.: Aligning Observed and Modeled Behavior. Ph.D. thesis, Eindhoven
University of Technology (2014)

9. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Conformance checking
using cost-based fitness analysis. In: IEEE EDOC 2011. pp. 55–64 (2011), http:
//dx.doi.org/10.1109/EDOC.2011.12

10. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der
Aalst, W.M.P.: Alignment based precision checking. In: Business Process Man-
agement Workshops 2012. pp. 137–149 (2012), http://dx.doi.org/10.1007/

978-3-642-36285-9_15

11. Ammons, G., Bod́ık, R., Larus, J.R.: Mining specifications. In: POPL SIGPLAN-
SIGACT 2002. pp. 4–16 (2002), http://doi.acm.org/10.1145/503272.503275

12. Armas-Cervantes, A., Baldan, P., Dumas, M., Garćıa-Bañuelos, L.: Beha-
vioral comparison of process models based on canonically reduced event
structures. In: BPM 2014. pp. 267–282 (2014), http://dx.doi.org/10.1007/

978-3-319-10172-9_17

13. Badouel, E.: On the α-reconstructibility of workflow nets. In: Petri Nets’12. LNCS,
vol. 7347, pp. 128–147. Springer (2012)

14. Becker, M., Laue, R.: A comparative survey of business process similarity measures.
Computers in Industry 63(2), 148–167 (2012), http://dx.doi.org/10.1016/j.

compind.2011.11.003

15. van Beest, N.R.T.P., Dumas, M., Garćıa-Bañuelos, L., Rosa, M.L.: Log delta ana-
lysis: Interpretable differencing of business process event logs. In: BPM 2015. pp.
386–405 (2015), http://dx.doi.org/10.1007/978-3-319-23063-4_26

16. Benner-Wickner, M., Brückmann, T., Gruhn, V., Book, M.: Process mining for
knowledge-intensive business processes. In: I-KNOW 2015. pp. 4:1–4:8 (2015),
http://doi.acm.org/10.1145/2809563.2809580

17. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on regions
of languages. Business Process Management pp. 375–383 (2007)

18. Bergenthum, R., Desel, J., Mauser, S., Lorenz, R.: Synthesis of Petri nets from
term based representations of infinite partial languages. Fundam. Inform. 95(1),
187–217 (2009)

19. Buijs, J.C.A.M.: Flexible Evolutionary Algorithms for Mining Structured Process
Models. Ph.D. thesis, Eindhoven University of Technology (2014)

20. Buijs, J., van Dongen, B., van der Aalst, W.: A genetic algorithm for discovering
process trees. In: IEEE Congress on Evolutionary Computation. pp. 1–8 (2012)

21. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness,
precision, generalization and simplicity in process discovery. In: OTM. LNCS, vol.
7565, pp. 305–322 (2012), http://dx.doi.org/10.1007/978-3-642-33606-5_19

40 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

22. Burattin, A.: PLG2: multiperspective processes randomization and simulation for
online and offline settings. CoRR abs/1506.08415 (2015), http://arxiv.org/abs/
1506.08415

23. Burattin, A., Sperduti, A., van der Aalst, W.M.P.: Control-flow discovery from
event streams. In: IEEE Congress on Evolutionary Computation. pp. 2420–2427
(2014), http://dx.doi.org/10.1109/CEC.2014.6900341

24. Carmona, J., Solé, M.: PMLAB: an scripting environment for process mining. In:
BPM Demos. CEUR-WP, vol. 1295, p. 16 (2014)

25. Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri nets
from finite transition systems. Computers, IEEE Transactions on 47(8), 859–882
(1998)

26. Datta, S., Bhaduri, K., Giannella, C., Wolff, R., Kargupta, H.: Distributed data
mining in peer-to-peer networks. IEEE Internet Computing 10(4), 18–26 (2006),
http://doi.ieeecomputersociety.org/10.1109/MIC.2006.74

27. Dijkman, R.M., van Dongen, B.F., Dumas, M., Garćıa-Bañuelos, L., Kunze, M.,
Leopold, H., Mendling, J., Uba, R., Weidlich, M., Weske, M., Yan, Z.: A short
survey on process model similarity. In: Seminal Contributions to Information Sys-
tems Engineering, 25 Years of CAiSE, pp. 421–427 (2013), http://dx.doi.org/
10.1007/978-3-642-36926-1_34

28. van Dongen, B.: BPI Challenge 2011 Dataset (2011), http://dx.doi.org/10.

4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54

29. van Dongen, B.: BPI Challenge 2012 Dataset (2012), http://dx.doi.org/10.

4121/uuid:3926db30-f712-4394-aebc-75976070e91f

30. van Dongen, B.F., Dijkman, R.M., Mendling, J.: Measuring similarity between
business process models. In: Seminal Contributions to Information Systems En-
gineering, 25 Years of CAiSE, pp. 405–419 (2013), http://dx.doi.org/10.1007/
978-3-642-36926-1_33

31. Evermann, J.: Scalable process discovery using map-reduce. In: IEEE Transactions
on Services Computing. vol. to appear (2014)

32. Gabel, M., Su, Z.: Javert: fully automatic mining of general temporal properties
from dynamic traces. In: ACM SIGSOFT 2008. pp. 339–349 (2008), http://doi.
acm.org/10.1145/1453101.1453150

33. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimu-
lation semantics. J. ACM 43(3), 555–600 (1996), http://doi.acm.org/10.1145/
233551.233556

34. Günther, C., Rozinat, A.: Disco: Discover your processes. In: BPM (Demos). pp.
40–44 (2012)

35. Hay, B., Wets, G., Vanhoof, K.: Mining navigation patterns using a sequence align-
ment method. Knowl. Inf. Syst. 6(2), 150–163 (2004)

36. Hwong, Y., Keiren, J.J.A., Kusters, V.J.J., Leemans, S.J.J., Willemse, T.A.C.:
Formalising and analysing the control software of the compact muon solenoid ex-
periment at the large hadron collider. Sci. Comput. Program. 78(12), 2435–2452
(2013), http://dx.doi.org/10.1016/j.scico.2012.11.009

37. Kohavi, R., Brodley, C.E., Frasca, B., Mason, L., Zheng, Z.: Kdd-cup 2000 or-
ganizers’ report: Peeling the onion. SIGKDD Explorations 2(2), 86–98 (2000),
http://doi.acm.org/10.1145/380995.381033

38. Kunze, M., Weidlich, M., Weske, M.: Querying process models by behavior in-
clusion. Software and System Modeling 14(3), 1105–1125 (2015), http://dx.doi.
org/10.1007/s10270-013-0389-6

Scalable Process Discovery and Conformance Checking 41

39. Leemans, M., van der Aalst, W.: Process mining in software systems. ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems p.
to appear (2015)

40. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - A constructive approach. In: Petri Nets 2013. pp.
311–329 (2013), http://dx.doi.org/10.1007/978-3-642-38697-8_17

41. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery
with guarantees. In: BPMDS 2015. pp. 85–101 (2015), http://dx.doi.org/10.

1007/978-3-319-19237-6_6
42. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discov-

ery and conformance checking. BPM Center Report BPM-16-03, BPMcenter.org
(2016)

43. Leemans, S., Fahland, D., van der Aalst, W.: Discovering block-structured pro-
cess models from event logs containing infrequent behaviour. In: Business Process
Management Workshops. pp. 66–78 (2013)

44. Leemans, S., Fahland, D., van der Aalst, W.: Discovering block-structured process
models from incomplete event logs. In: Petri nets 2014. vol. 8489, pp. 91–110 (2014),
http://dx.doi.org/10.1007/978-3-319-07734-5_6

45. Leemans, S., Fahland, D., van der Aalst, W.: Exploring processes and deviations.
In: Business Process Management Workshops. p. to appear (2014)

46. Liesaputra, V., Yongchareon, S., Chaisiri, S.: Efficient process model discovery
using maximal pattern mining. In: BPM 2015. pp. 441–456 (2015), http://dx.

doi.org/10.1007/978-3-319-23063-4_29
47. Linz, P.: An introduction to formal languages and automata. Jones & Bartlett

Learning (2011)
48. Lu, X., Fahland, D., van den Biggelaar, F.J., van der Aalst, W.M.: Label refinement

for handling duplicated tasks in process discovery. In: BPM. p. submitted (2016)
49. Møller, A.: dk.brics.automaton – finite-state automata and regular expressions for

Java (2010), http://www.brics.dk/automaton/
50. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Single-entry single-exit

decomposed conformance checking. Inf. Syst. 46, 102–122 (2014), http://dx.doi.
org/10.1016/j.is.2014.04.003

51. Pradel, M., Gross, T.R.: Automatic generation of object usage specifications from
large method traces. In: ASE 2009. pp. 371–382. IEEE Computer Society (2009),
http://dx.doi.org/10.1109/ASE.2009.60

52. Redlich, D., Molka, T., Gilani, W., Blair, G.S., Rashid, A.: Constructs com-
petition miner: Process control-flow discovery of bp-domain constructs. In:
BPM 2014. LNCS, vol. 8659, pp. 134–150 (2014), http://dx.doi.org/10.1007/
978-3-319-10172-9_9

53. Redlich, D., Molka, T., Gilani, W., Blair, G.S., Rashid, A.: Scalable dynamic busi-
ness process discovery with the constructs competition miner. In: SIMPDA 2014.
CEUR-WP, vol. 1293, pp. 91–107 (2014)

54. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008), http://dx.doi.org/10.
1016/j.is.2007.07.001

55. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and more focused control-flow ana-
lysis for business process models through SESE decomposition. In: ICSOC 2007.
pp. 43–55 (2007), http://dx.doi.org/10.1007/978-3-540-74974-5_4

56. Weerdt, J.D., Backer, M.D., Vanthienen, J., Baesens, B.: A multi-dimensional qual-
ity assessment of state-of-the-art process discovery algorithms using real-life event
logs. Inf. Syst. 37(7), 654–676 (2012)

42 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

57. Weidlich, M., van der Werf, J.: On profiles and footprints - relational semantics
for Petri nets. In: Petri Nets. pp. 148–167 (2012)

58. Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Causal behavioural profiles
- efficient computation, applications, and evaluation. Fundam. Inform. 113(3-4),
399–435 (2011)

59. Weijters, A., van der Aalst, W., de Medeiros, A.: Process mining with the heur-
istics miner-algorithm. BETA Working Paper series 166, Eindhoven University of
Technology (2006)

60. Weijters, A., Ribeiro, J.: Flexible Heuristics Miner. In: CIDM. pp. 310–317 (2011)
61. Wen, L., van der Aalst, W., Wang, J., Sun, J.: Mining process models with non-free-

choice constructs. Data Mining and Knowledge Discovery 15(2), 145–180 (2007)
62. Wen, L., Wang, J., Sun, J.: Mining invisible tasks from event logs. Advances in

Data and Web Management pp. 358–365 (2007)
63. van der Werf, J., van Dongen, B., Hurkens, C., Serebrenik, A.: Process discovery

using integer linear programming. Fundam. Inform. 94(3-4), 387–412 (2009)
64. Yang, J., Evans, D., Bhardwaj, D., Bhat, T., Das, M.: Perracotta: mining temporal

API rules from imperfect traces. In: ICSE 2006. pp. 282–291 (2006), http://doi.
acm.org/10.1145/1134325

65. Zha, H., Wang, J., Wen, L., Wang, C., Sun, J.: A workflow net similarity measure
based on transition adjacency relations. Computers in Industry 61(5), 463–471
(2010), http://dx.doi.org/10.1016/j.compind.2010.01.001

