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Abstract. Process discovery techniques return process models that are either for-
mal (precisely describing the possible behaviors) or informal (merely a “picture”
not allowing for any form of formal reasoning). Formal models are able to clas-
sify traces (i.e., sequences of events) as fitting or non-fitting. Most process min-
ing approaches described in the literature produce such models. This is in stark
contrast with the over 25 available commercial process mining tools that only
discover informal process models that remain deliberately vague on the precise
set of possible traces. There are two main reasons why vendors resort to such
models: scalability and simplicity. In this paper, we propose to combine the best
of both worlds: discovering hybrid process models that have formal and informal
elements. As a proof of concept we present a discovery technique based on hybrid
Petri nets. These models allow for formal reasoning, but also reveal information
that cannot be captured in mainstream formal models. A novel discovery algo-
rithm returning hybrid Petri nets has been implemented in ProM and has been
applied to several real-life event logs. The results clearly demonstrate the ad-
vantages of remaining “vague” when there is not enough “evidence” in the data
or standard modeling constructs do not “fit”. Moreover, the approach is scalable
enough to be incorporated in industrial-strength process mining tools.
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1 Introduction

The increased interest in process mining illustrates that Business Process Management
(BPM) is rapidly becoming more data-driven [1]. Evidence-based BPM based on pro-
cess mining helps to create a common ground for business process improvement and
information systems development. The uptake of process mining is reflected by the
growing number of commercial process mining tools available today. There are over
25 commercial products supporting process mining (Celonis, Disco, Minit, myInvenio,
ProcessGold, QPR, etc.). All support process discovery and can be used to improve
compliance and performance problems. For example, without any modeling, it is possi-
ble to learn process models clearly showing the main bottlenecks and deviating behav-
iors.

These commercial tools are based on variants of techniques like the heuristic miner
[17] and the fuzzy miner [8] developed over a decade ago [1]. All return process models
that lack formal semantics and thus cannot be used as a classifier for traces. Classifying
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traces into fitting (behavior allowed by the model) and non-fitting (not possible accord-
ing to the model) is however important for more advanced types of process mining. In-
formal models (“boxes and arcs”) provide valuable insights, but cannot be used to draw
reliable conclusions. Therefore, most discovery algorithms described in the literature
(e.g., the α-algorithm [3], the region-based approaches [6, 15, 18], and the inductive
mining approaches [11, 12, 13]) produce formal models (Petri nets, transition systems,
automata, process trees, etc.) having clear semantics.

So why did vendors of commercial process mining tools opt for informal models?
Some of the main drivers for this choice include:

– Simplicity: Formal models may be hard to understand. End-users need to be able
to interpret process mining results: Petri nets with smartly constructed places and
BPMN with many gateways are quickly perceived as too complex.

– Vagueness: Formal models act as binary classifiers: traces are fitting or non-fitting.
For real-life processes this is often not so clear cut. The model capturing 80 percent
of all traces may be simple and more valuable than the model that allows for all
outliers and deviations seen in the event log. Hence, “vagueness” may be desirable
to show relationships that cannot be interpreted in a precise manner.

– Scalability: Commercial process mining tools need to be able to handle logs with
millions of events and still be used in an interactive manner. Many of the more so-
phisticated discovery algorithms producing formal models (e.g., region-based ap-
proaches [6, 15, 18]) do not scale well.

The state-of-the-art commercial products show that simplicity, vagueness and scalabil-
ity can be combined effectively. Obviously, vagueness and simplicity may also pose
problems. People may not trust process mining results when a precise interpretation of
the generated model is impossible. When an activity has multiple outgoing arcs, i.e.,
multiple preceding activities, one would like to know whether these are concurrent or
in a choice relation. Which combinations of output arcs can be combined? Showing fre-
quencies on nodes (activities) and arcs may further add to the confusion when “numbers
do not add up”.

We propose hybrid process models as a way to combine the best of both worlds.
Such models show informal dependencies (like in commercial tools) that are deliber-
ately vague and at the same time provide formal semantics for the parts that are clear-
cut. Whenever there is enough structure and evidence in the data, explicit routing con-
structs are used. If dependencies are weak or too complex, then they are not left out, but
depicted in an informal manner.

We use hybrid Petri nets, a new class for Petri nets with informal annotations, as
a concrete representation of hybrid process models. However, the ideas, concepts, and
algorithms are generic and could also be used in the context of BPMN, UML activity
diagrams, etc. Our proposed discovery technique has two phases. First we discover a
causal graph based on the event log. Based on different (threshold) parameters we scan
the event log for possible causalities. In the second phase we try to learn places based
on explicit quality criteria. Places added can be interpreted in a precise manner and have
a guaranteed quality. Causal relations that cannot or should not be expressed in terms
of places are added as sure or unsure arcs. The resulting hybrid Petri net can be used as
a starting point for other types of process mining.
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The approach has been implemented in ProM and has been tested on various event
logs and processes. These applications of our approach show that hybrid process models
are useful and combine the best of both worlds: simplicity, vagueness, and scalability
can be combined with partly formal models that allow for reasoning and provide formal
guarantees.

The remainder is organized as follows. We first present a running example (Sect. 2)
and some preliminaries (Sect. 3). Sect. 4 defines hybrid Petri nets. The actual two-
phase discovery approach is presented in Sect. 5. Sect. 6 describes the ProM plug-
ins developed to support the discovery of hybrid process models. Sect. 7 evaluates the
approach. Sect. 8 discusses related work and Sect. 9 concludes the paper.

2 Motivating Example

Figure 1 illustrates the trade-offs using example data from an order handling process.
All five models have been produced for the same event log containing 12,666 cases,
80,609 events, and eight unique activities. Each case has a corresponding trace, i.e., a
sequence of events. Models (a), (b), and (c) are expressed in terms of a Petri net and
have formal semantics. Model (a) was created using the ILP miner with default settings;
it is precise and each of the 12,666 cases perfectly fits the model. However, model (a) is
difficult to read. For larger event logs, having more activities and infrequent paths, the
ILP miner is not able to produce meaningful models (the approach becomes intractable
and/or produces incomprehensible models). Models (b) and (c) were created using the
inductive miner (IMf [12]) with different settings for the noise threshold (0.0 respec-
tively 0.2). Model (b) is underfitting, but able to replay all cases. Model (c) focuses
on the mainstream behavior only, but only 9,440 of the 12,666 cases fit perfectly. In
3,189 cases there are multiple reminders and in 37 cases the payment is done before
sending the invoice. All other cases conform to model (c). Models (d) and (e) were
created using the commercial process mining tool Disco (Fluxicon) using different set-
tings. These models are informal. Model (d) shows only the most frequent paths and

(a) precise and fitting process model discovered by the ILP miner

(b) underfitting process model discovered by the inductive miner

(c) non-fitting process model discovered by the inductive miner
(d) Disco model showing only 

the most frequent paths

(e) Disco model also showing 
the infrequent paths

Fig. 1. Five process models discovered for an event log recorded for 12,666 orders (labels are not
intended to be readable).
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model (e) shows all possible paths. For such informal models it is impossible to de-
termine the exact nature of splits and joins. Commercial tools have problems dealing
with loops and concurrency. For example, for each of the 12,666 cases, activities make
delivery and confirm payment happened at most once, but not in a fixed order. However,
these concurrent activities are put into a loop in models (d) and (e). This problem is not
specific for Disco or this event log: all commercial tools suffer from this problem.

We would like to combine the left-hand side and the right-hand side of Figure 1 by
using formal semantics when the behavior is clear and easy to express and resorting to
informal annotations when things are blurry or inexact.

3 Preliminaries

In this section we introduce basic concepts, including multisets, operations on se-
quences, event logs and Petri nets.
B(A) is the set of all multisets over some setA. For some multisetX ∈ B(A),X(a)

denotes the number of times element a ∈ A appears in X . Some examples: X = [ ],
Y = [x, x, y], and Z = [x3, y2, z] are multisets over A = {x, y, z}. X is the empty
multiset, Y has three elements (Y (x) = 2, Y (y) = 1, and Y (z) = 0), and Z has six
elements. Note that the ordering of elements is irrelevant.

σ = 〈a1, a2, . . . , an〉 ∈ A∗ denotes a sequence over A. σ(i) = ai denotes the i-th
element of the sequence. |σ| = n is the length of σ and dom(σ) = {1, . . . , |σ|} is the
domain of σ. 〈 〉 is the empty sequence, i.e., |〈 〉| = 0 and dom(〈 〉) = ∅. σ1 · σ2 is the
concatenation of two sequences.

Let A be a set and X ⊆ A one of its subsets. �X∈ A∗ → X∗ is a projec-
tion function and is defined recursively: 〈 〉 �X= 〈 〉 and for σ ∈ A∗ and a ∈ A:
(〈a〉 · σ)�X= σ �X if a 6∈ X and (〈a〉 · σ)�X= 〈a〉 · σ �X if a ∈ X . For example,
〈a, b, a〉�{a,c}= 〈a, a〉. Projection can also be applied to multisets of sequences, e.g.,
[〈a, b, a〉5, 〈a, d, a〉5, 〈a, c, e〉3]�{a,c}= [〈a, a〉10, 〈a, c〉3].

Starting point for process discovery is an event log where events are grouped into
cases. Each case is represented by a trace, e.g., 〈., a, b, c, d,�〉.

Definition 1 (Event Log). An event log L ∈ B(A∗) is a non-empty multiset of traces
over some activity set A. A trace σ ∈ L is a sequence of activities. There is a special
start activity . and a special end activity �. We require that {.,�} ⊆ A and each trace
σ ∈ L has the structure σ = 〈., a1, a2, . . . , an,�〉 and {.,�} ∩ {a1, a2, . . . , an} = ∅.
UL is the set of all event logs satisfying these requirements.

An event log captures the observed behavior that is used to learn a process model.
An example log is L1 = [〈., a, b, c, d,�〉45, 〈., a, c, b, d,�〉35, 〈., a, e, d,�〉20] contain-
ing 100 traces (|L1| = 100) and 580 events (

∑
σ∈L1

|σ| = 580). In reality, each event
has a timestamp and may have any number of additional attributes. For example, an
event may refer to a customer, a product, the person executing the event, associated
costs, etc. Here we abstract from these notions and simply represent an event by its
activity name.

A Petri net is a bipartite graph composed of places (represented by circles) and
transitions (represented by squares).
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Definition 2 (Petri Net). A Petri net is a tuple N = (P, T, F ) with P the set of places,
T the set of transitions, P ∩ T = ∅, and F ⊆ (P × T ) ∪ (T × P ) the flow relation.

Transitions represent activities and places are added to model causal relations. •x =
{y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F} define input and output sets of places and
transitions. Places can be used to causally connect transitions as is reflected by relation
F̂ : (t1, t2) ∈ F̂ if t1 and t2 are connected through a place p, i.e., p ∈ t1• and p ∈ •t2.

Definition 3 (F̂ ). Let N = (P, T, F ) be a Petri net. F̂ = {(t1, t2) ∈ T × T |
∃p∈P {(t1, p), (p, t2)} ⊆ F} are all pairs of transitions connected through places.

The state of a Petri net, called marking, is a multiset of places indicating how many
tokens each place contains. Tokens are shown as block dots inside places.

Definition 4 (Marking). Let N = (P, T, F ) be a Petri net. A marking M is a multiset
of places, i.e., M ∈ B(P ).

A transition t ∈ T is enabled in marking M of net N , denoted as (N,M)[t〉, if
each of its input places (p ∈ •t) contains at least one token. An enabled transition t
may fire, i.e., one token is removed from each of the input places (p ∈ •t) and one
token is produced for each of the output places (p ∈ t• ).

(N,M)[t〉(N,M ′) denotes that t is enabled in M and firing t results in marking
M ′. Let σ = 〈t1, t2, . . . , tn〉 ∈ T ∗ be a sequence of transitions, sometimes referred to
as a trace. (N,M)[σ〉(N,M ′) denotes that there is a set of markings M0,M1, . . . ,Mn

such that M0 =M , Mn =M ′, and (N,Mi)[ti+1〉(N,Mi+1) for 0 ≤ i < n.
A system net has an initial and a final marking. The behavior of a system net corre-

sponds to the set of traces starting in the initial marking Minit and ending in the final
marking Mfinal .

Definition 5 (System Net Behavior). A system net is a triplet SN = (N,Minit ,Mfinal)
where N = (P, T, F ) is a Petri net, Minit ∈ B(P ) is the initial marking, and
Mfinal ∈ B(P ) is the final marking. behav(SN ) = {σ | (N,Minit)[σ〉(N,Mfinal)} is
the set of traces possible according to the model.

Note that a system net classifies traces σ into fitting (σ ∈ behav(SN )) and non-
fitting (σ 6∈ behav(SN )).

4 Hybrid Petri Nets

A formal process model is able to make firm statements about the inclusion or exclusion
of traces, e.g., trace 〈., a, b, c, d,�〉 fits the model or not. Informal process models are
unable to make such precise statements about traces. Events logs only show example
behavior: (1) logs are typically incomplete (e.g., the data only shows a fraction of all
possible interleavings, combinations of choices, or unfoldings) and (2) logs may contain
infrequent exceptional behavior where the model should abstract from. Therefore, it is
impossible to make conclusive decisions based on event logs. More observations may
lead to a higher certainty and the desire to make a formal statement (e.g., “after a there
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Type I 

?

Type II Type III 

strong causality
(“sure”)

weak causality
(“unsure”)

formal
(firm statements about 

the inclusion or 
exclusion of traces)

informal
(annotations that are 
deliberately vague)

Fig. 2. The strength of a causality and the formality of a modeling construct are orthogonal.
However, it makes less sense to express a weak causality in a formal manner.

is a choice between b and c”). However, fewer observations and complex dependencies
create the desire to remain “vague”. Models (a), (b) and (c) in Figure 1 have formal
semantics as described in Definition 5. (The initial and final markings are defined but
not indicated explicitly: the source places are initially marked and the sink places are the
only places marked in the final markings.) Models (d) and (e) in Figure 1 are informal
and therefore unable to classify traces into fitting and non-fitting.

In essence process models describe causalities between activities. Depending on
the evidence in the data these causalities can be seen as stronger (“sure”) or weaker
(“unsure”). The strength of a causal relation expresses the level of confidence. A strong
causality between two activities a and b suggests that one is quite sure that activity a
causes activity b to happen later in time. This does not mean that a is always followed
by b. The occurrence of b may depend on other factors, e.g., b requires c to happen
concurrently or a only increases the likelihood of b.

The strength of a causality and the formality of a modeling construct are orthogonal
as shown in Figure 2. Even when one is not sure, one can still use a formally specified
modeling construct. Moreover, both notions may be local, e.g., parts of the process
model are more certain or modeled precisely whereas other parts are less clear and
therefore kept vague.

As Figure 2 suggests it seems undesirable to express a weak causality using a formal
construct. Moreover, depending on the representational bias of the modeling notation,
strong causalities may not be expressed easily. The modeling notation may not support
concurrency, duplicate activities, unstructured models, long-term dependencies, OR-
joins, etc. Attempts to express behavior incompatible with representational bias of the
modeling notation in a formal model are doomed to fail. Hence, things that cannot
be expressed easily in an exact manner can only be captured using annotations that
are deliberately vague and non-executable. Instead, we aim to combine the best of
both worlds, i.e., marrying the left-hand side and the right-hand side of Figure 1 by
combining both formal and informal notations.

Although the ideas are generic and also apply to other notations (BPMN, UML ac-
tivity diagrams, etc.), we operationalize the notion of hybrid process models by defining
and using so-called hybrid Petri nets. Unlike conventional Petri nets, we use different
types of arcs to indicate the level of certainty.

Figure 3 shows an example of a hybrid Petri net discovered based on the event log
also used to create the models in Figure 1. Strong causalities are expressed through
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conventional places and arcs and sure arcs (arcs directly connecting transitions). Weak
causalities are expressed using unsure arcs (dashed arcs with a question mark). Figure 2
shows the three types of arcs.

Definition 6 (Hybrid Petri Net). A hybrid Petri net is a tuple HPN = (P, T, F1,

F2, F3) where (P, T, F1) is a Petri net, F2 ⊆ T ×T , and F3 ⊆ T ×T such that F̂1, F2,
and F3 are pairwise disjoint. Arcs of Type I ((p, t) ∈ F1 or (t, p) ∈ F1) are the normal
arcs connecting a place to a transition or vice versa. Arcs of Type II ((t1, t2) ∈ F2)
are arcs indicating a strong causality between two transitions (sure arcs). Arcs of Type
III ((t1, t2) ∈ F3) are arcs indicating a weak causality between two transitions (unsure
arcs).

Transitions, places, and normal (Type I) arcs have formal semantics as defined in
Sect. 3. Again we define an initial and final marking to reason about the set of traces
possible. Therefore, we define the notion of a hybrid system net.

Definition 7 (Hybrid System Net). A hybrid system net is a triplet HSN = (HPN ,
Minit ,Mfinal) where HPN = (P, T, F1, F2, F3) is a hybrid Petri net, Minit ∈ B(P )
is the initial marking, and Mfinal ∈ B(P ) is the final marking. UHSN is the set of all
possible hybrid system nets. behav(HSN ) is defined as in Definition 5 while ignoring
the sure and unsure arcs (i.e., remove F2 and F3).

Only normal (Type I) arcs have formal semantics; the other two types of arcs are in-
formal and do not include or exclude traces. Recall that Petri net without any places
allows for any behavior and adding a place can only restrict behavior. A sure arc
(t1, t2) ∈ F2 should be interpreted as a strong causal relationship that cannot be ex-
pressed (easily) in terms of a place connecting t1 and t2. An unsure arc (t1, t2) ∈ F3 is
a suspected causal relationship that is too weak to justify a place connecting t1 and t2.

The role of sure and unsure arcs will become clearer when presenting the discovery
technique in the next section. Figure 3 also uses special symbols for the start and end
activities (. and �) as introduced in Definition 1, but the semantics of HSN do not
depend on this.

start send 

invoice

confirm 

payment

pay

make 

delivery

send 

reminder

cancel 

order

place 

order

prepare 

delivery

?

end

?

p1 p2 p3

p4

p5

p6

p7

p8

p9

Fig. 3. A hybrid system net with Minit = [p1] and Mfinal = [p9]. This hybrid model was
discovered using the approach presented in Sect. 5.
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We would like to stress that only the places in a hybrid system net HSN provide for-
mal semantics. Behavioral quality measures such as fitness and precision will be based
solely on the places in HSN (see definition behav(HSN )). Sure arcs (F2) and unsure
arcs (F3) carry important information but cannot be used for such quality measures.

5 Discovering Hybrid Process Models

We aim to discover hybrid process models. As a target format we have chosen hybrid
system nets that have three types of arcs. We use a two-step approach. First, we discover
a causal graph (Sect. 5.1). Based on the causalities identified, we generate candidate
places. These places are subsequently evaluated using replay techniques (Sect. 5.2).
Strong causalities that cannot be expressed in terms of places are added to the hybrid
system net as sure arcs. Moreover, the resulting hybrid model may also express weak
causal relations as unsure arcs.

5.1 Discovering Causal Graphs

A causal graph is a directed graph with activities as nodes. There is always a unique
start activity (.) and end activity (�). There are two kinds of causal relations: strong
and weak. These correspond to the two columns in Figure 2.

Definition 8 (Causal Graph). A causal graph is a triplet G = (A,RS , RW ) where A
is the set of activities including start and end activities (i.e., {.,�} ⊆ A), RS ⊆ A×A
is the set of strong causal relations, RW ⊆ A × A is the set of weak causal relations,
and RS ∩RW = ∅ (relations are disjoint). UG is the set of all causal graphs.

Figure 4 shows a causal graph derived from the event log also used to discover the
models in Figure 1. The dashed arcs with question marks correspond to weak causal
relations. The other arcs correspond to strong causal relations.

start send 

invoice

confirm 

payment

pay

make 

delivery

send 

reminder

cancel 

order

place 

order

prepare 

delivery

?

end

?

Fig. 4. A causal graph: nodes correspond to activities and arcs correspond to causal relations.
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Definition 9 (Causal Graph Discovery). A causal graph discovery function disccg ∈
UL → UG is a function that constructs a causal graph disccg(L) = (A,RS , RW ) for
any event log L ∈ UL over A.

There are many algorithms possible to construct a causal graph from a log. As an ex-
ample, we use a variant of the approach used by the heuristic miner [1, 17]. We tailored
the approach to hybrid discovery (i.e., different types of arcs) while aiming for param-
eters that are intuitive and can be used interactively (e.g., thresholds can be changed
seamlessly while instantly showing the resulting graph). Note that we clearly separate
the identification of causalities from the discovery of process logic (see Sect. 5.2).

Definition 10 (Log-Based Properties). Let L ∈ UL be an event log over A and
{a, b} ⊆ A.

– #(a, L) =
∑
σ∈L |{i ∈ dom(σ) | σ(i) = a}| counts the number of a’s in log L.

– #(X,L) =
∑
x∈X #(x, L) counts the number of X ⊆ A activities in L.

– #(a, b, L) =
∑
σ∈L |{i ∈ dom(σ) \ {|σ|} | σ(i) = a ∧ σ(i+ 1) = b}| counts

the number of times a is directly followed by b in event log L.
– #(∗, b, L) =

∑
σ∈L |{i ∈ dom(σ) \ {|σ|} | σ(i+ 1) = b}| counts the number of

times b is preceded by some activity.
– #(a, ∗, L) =

∑
σ∈L |{i ∈ dom(σ) \ {|σ|} | σ(i) = a}| counts the number of times

a is succeeded by some activity.

– Rel1 (a, b, L) =
#(a, b, L) + #(a, b, L)

#(a, ∗, L) + #(∗, b, L)
counts the strength of relation (a, b) rel-

ative to the split and join behavior of activities a and b.

– Rel2 c(a, b, L) =


#(a,b,L)−#(b,a,L)

#(a,b,L)+#(b,a,L)+c if #(a, b, L)−#(b, a, L) > 0
#(a,b,L)

#(a,b,L)+c if a = b

0 otherwise
counts the strength of relation (a, b) taking into account concurrency and loops
using parameter c ∈ R+ (default c = 1).

– Causc,w(a, b, L) = w ·Rel1 (a, b, L)+ (1−w) ·Rel2 c(a, b, L) takes the weighted
average of both relations where w ∈ [0, 1] is a parameter indicating the relative
importance of the first relation. If w = 1, we only use Rel1 (a, b, L). If w = 0, we
only use Rel2 c(a, b, L). If w = 0.5, then both have an equal weight.

Rel1 (a, b, L), Rel2 c(a, b, L), and Causc,w(a, b, L) all produce values between 0
(weak) and 1 (strong). Using the properties in Definition 10, we define a concrete func-
tion disccg to create causal graphs. All activities that occur at least tfreq times in the
event log are included as nodes. The strength of relations between remaining activities
(based on Causc,w) are used to infer causal relations. tRS

and tRW
are thresholds for

strong respectively weak causal relations. Parameter w determines the relative impor-
tance of Rel1 and Rel2 c. Parameter c is typically set to 1.

Definition 11 (Concrete Causal Graph Discovery Technique). Let L ∈ UL be an
event log over A and let tfreq ∈ IN+, c ∈ R+, w ∈ [0, 1], tRS

∈ [0, 1], tRW
∈

[0, 1] be parameters such that tRS
≥ tRW

. The corresponding causal graph is G =
disccg(L) = (A′, RS , RW ) where
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– A′ = {a ∈ A | #(a, L) ≥ tfreq} ∪ {.,�} is the set of activities that meet the
threshold (the start and end activities are always included).

– RS = {(a, b) ∈ A′ × A′ | Causc,w(a, b, L�A′) ≥ tRS
} is the set of strong causal

relations.
– RW = {(a, b) ∈ A′ × A′ | tRS

> Causc,w(a, b, L�A′) ≥ tRW
} is the set of weak

causal relations.

Figure 4 shows a causal graph constructed using parameters tfreq = 1000, c = 1,
w = 0.2, tRS

= 0.8, and tRW
= 0.75.

5.2 Discovering Hybrid System Nets

In the second step of the approach we use the causal graph to create a hybrid system net
(that turns strong causalities into formal constraints if possible).

Definition 12 (Hybrid System Net Discovery). A hybrid system net discovery function
dischsn ∈ (UL×UG)→ UHSN is a function that for any event log L and causal graph
G discovers a hybrid system net dischsn(L,G) ∈ UHSN .

Just like there are many algorithms possible to create a causal graph, there are also
multiple ways to construct a hybrid system net from an event log and causal graph. The
minimal consistency requirements can be defined as follows.

Definition 13 (Consistent). Let L ∈ UL be an event log, let G = (A,RS , RW ) ∈ UG
be a causal graph, and let HSN = (HPN ,Minit ,Mfinal) ∈ UHSN with HPN =
(P, T, F1, F2, F3) be a hybrid system net. L, G, and SN are consistent if and only if:
T = A ⊆

⋃
σ∈L{a ∈ σ}, {p., p�} ⊆ P , F1 ∩ (({p., p�} × T ) ∪ (T × {p., p�})) =

{(p., .), (�, p�)}, Minit = [p.] and Mfinal = [p�], for all p ∈ P \ {p., p�}: •p 6= ∅
and p• 6= ∅, RS = F̂1 ∪ F2, F̂1 ∩ F2 = ∅, and RW = F3.

An event log L, causal graph G, and hybrid system net HSN are consistent if (1)
L and G refer to the same set of activities all appearing in the event log, (2) there is
a source place p. marked in the initial place and enabling start activity ., (3) there is
a sink place p� marked in the final marking and connected to end activity �, (4) all
other places connect activities, (5) there is a one-to-one correspondence between strong
causal relations (RS) and connections through places (F̂1) or sure arcs (F2), and (6)
there is a one-to-one correspondence between weak causal relations (RW ) and unsure
arcs (F3).

Consider two activities a1, a2 ∈ A that are frequent enough to be included in the
model. These can be related in three different ways: (a1, a2) ∈ F̂1 if there is a place
connecting a1 and a2, (a1, a2) ∈ F2 if there is no place connecting a1 and a2 but there
is a strong causal relation between a1 and a2 (represented by a sure arc), (a1, a2) ∈ F3

if there is a weak causal relation between a1 and a2 (represented by an unsure arc).
Any discovery function dischsn ∈ (UL ×UG)→ UHSN should ensure consistency.

In fact, Definition 13 provides hints on how to discover a hybrid system net.
Assume a place p = (I,O) with input transitions •p = I and output transitions

p• = O is added. RS = F̂1 ∪ F2 implies that F̂1 ⊆ RS . Hence, I × O ⊆ RS , i.e.,
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place p = (I,O) can only connect transitions having strong causal relations. Moreover,
I and O should not be empty. These observations based on Definition 13 lead to the
following definition of candidate places.

Definition 14 (Candidate Places). Let G = (A,RS , RW ) ∈ UG be a causal graph.
The candidate places based on G are: candidates(G) = {(I,O) | I 6= ∅ ∧ O 6=
∅ ∧ I ×O ⊆ RS}.

Given a candidate place p = (I,O) we can check whether it allows for a particular
trace.

Definition 15 (Replayable trace). Let p = (I,O) be a place with input set •p = I
and output set p• = O. A trace σ = 〈a1, a2, . . . , an〉 ∈ A∗ is perfectly replayable with
respect to place p if and only if

– for all k ∈ {1, 2, . . . , n}: |{1 ≤ i < k | ai ∈ I}| ≥ |{1 ≤ i ≤ k | ai ∈ O}| (place
p cannot “go negative” while replaying the trace) and

– |{1 ≤ i ≤ n | ai ∈ I}| = |{1 ≤ i ≤ n | ai ∈ O}| (place p is empty at end).
We write X(p, σ) if σ is perfectly replayable with respect to place p = (I,O).
act(p, σ) = ∃a∈σ a ∈ (I ∪ O) denotes whether place p = (I,O) has been activated,
i.e., a token was consumed or produced for it in σ.

Note that X(p, σ) if σ is a trace of the system net having only one place p. To
evaluate candidate places one can define different scores.

Definition 16 (Candidate Place Scores). Let L ∈ UL be an event log. For any candi-
date place p = (I,O) with input set •p = I and output set p• = O, we define the
following scores:

– scorefreq(p, L) =
| [σ∈L|X(p,σ)] |

|L| is the fraction of fitting traces,

– scorerel(p, L) =
| [σ∈L|X(p,σ) ∧ act(p,σ)] |

| [σ∈L|act(p,σ)] | is the fraction of fitting traces that have
been activated, and

– scoreglob(p, L) = 1 − |#(I,L)−#(O,L) |
max(#(I,L),#(O,L)) is a global score only looking at the

aggregate frequencies of activities.

To explain the three scoring functions consider again L1 = [〈., a, b, c, d,�〉45,
〈., a, c, b, d,�〉35, 〈., a, e, d,�〉20]. Let us consider place p1 = (I1, O1) with I1 = {a}
and O2 = {b}. scorefreq(p1, L1) = scorerel(p1, L1) =

80/100 = 0.8 and scoreglob(p1,
L1) = 1 − |100−80|/max(100,80) = 0.8. For place p2 = (I2, O2) with I2 = {a} and
O2 = {b, e}: scorefreq(p2, L1) = scorerel(p2, L1) = scoreglob(p2, L1) = 1. Hence,
all three scoring functions agree and show that the second place is a better candidate.
Note that if the candidate place p does not inhibit any of the traces in the log, then all
scores are 1 by definition.

Let us now consider event log L2 = [〈c, d〉1000, 〈a, b〉100, 〈b, a〉10, 〈a, a, a, a, . . .
, a〉] (with the last trace containing 1000 a’s) and candidate place p1 = (I1, O1) with
I1 = {a} and O2 = {b}. scorefreq(p1, L2) = 1100/1111 = 0.99, scorerel(p1, L2) =
100/111 = 0.90, scoreglob(p1, L2) = 1−|1110−110|/max(1110,110) = 0.099. Now the val-
ues are very different. Interpreting the scores reveals that scorefreq is too optimistic. Ba-
sically one can add any place connected to low frequent activities, without substantially
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lowering the scorefreq score. Hence, scorerel is preferable over scorefreq . scoreglob can
be computed very efficiently because traces do not need to be replayed. It can be used
to quickly prune the set of candidate places, but the last example shows that one needs
to be careful when traces are unbalanced (i.e., I or O activities occur many times in a
few traces).

Based on the above discussion we use scoring function scorerel in conjunction with
a threshold treplay . The causal graph, a set of candidate places, and this threshold can
be used to discover a hybrid system net.

Definition 17 (Concrete Discovery Technique). Let L ∈ UL be an event log and
let G = (A,RS , RW ) ∈ UG be a causal graph. treplay is the threshold for the
fraction of fitting traces that have been activated. The discovered hybrid system net
dischsn(L,G) = (HPN ,Minit ,Mfinal) with HPN = (P, T, F1, F2, F3) is con-
structed as follows

– Q = {p ∈ candidates(G) | scorerel(p, L �A) ≥ treplay} is the set of internal
places (all candidate places meeting the threshold),

– P = {p., p�} ∪Q is the set of places ({p., p�} ∩Q = ∅),
– T = A is the set of transitions,
– F1 = {(p., .), (�, p�)} ∪ {(t, (I,O)) ∈ T ×Q | t ∈ I} ∪ {((I,O), t) ∈ Q× T |
t ∈ O} is the set of normal arcs,

– F2 = RS \ F̂1 is the set of sure arcs, and
– F3 = RW is the set of unsure arcs.

It is easy to check that this concrete dischsn function indeed ensures consistency.
The construction of the discovered hybrid system net is guided by the causal graph.
We can construct hybrid system net dischsn(L, disccg(L)) for any event log L using
parameters tfreq , c, w, tRS

, tRW
, and treplay . For example, the hybrid model shown in

Figure 3 was discovered using tfreq = 1000, c = 1, w = 0.2, tRS
= 0.8, tRW

= 0.75,
and treplay = 0.9. Our discovery approach is highly configurable and also provides
formal guarantees (e.g., treplay = 1 ensures perfect fitness). When there is not enough
structure or evidence in the data, the approach is not coerced to return a model that
suggests a level of confidence that is not justified.

6 Implementation

Two novel ProM plug-ins have been created to support the approach described in this
paper.1 The Causal Graph Miner plug-in is used to create a causal graph using the
approach described in Definition 11. The user can control the parameters w, tfreq , tRS

,
and tRW

through sliders and directly see the effects in the resulting graph. The Hybrid
Petri Net Miner plug-in implements Definition 17 and takes as input an event log and
a causal graph. The plug-in returns a discovered hybrid system net. Only places that
meet the treplay threshold are added. The replay approach has been optimized to stop
replaying a trace when it does not fit.
1 Install ProM and the package HybridMiner from http://www.promtools.org.
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fuzzy Petri 
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unsure arc
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Fig. 5. Screenshots of the Causal Graph Miner (left) and the Hybrid Petri Net Miner (right)
analyzing the running example with parameter settings tfreq = 1000, c = 1, w = 0.2, tRS = 0.8,
tRW = 0.75, and treplay = 0.9.

Figure 5 shows the two plug-ins in action for the event log containing 12,666 cases
and 80,609 events. The results returned correspond to the causal graph depicted in Fig-
ure 4 and the hybrid system net depicted in Figure 3. Both were computed in less than
a second on a standard laptop. Activity send reminder may occur repeatedly (or not)
after sending the invoice but before payment or cancellation. However, payments may
also occur before sending the invoice. The hybrid system net in Figure 5 (also see Fig-
ure 3 which is better readable) clearly differentiates between (1) the behavior which is
dominant and clear and (2) the more vague behavior that cannot be captured formally
or is not supported by enough “evidence”. The example illustrates the scalability of the
approach while supporting simplicity and deliberate vagueness.

7 Evaluation

Table 1. Six data sets used.

Log Cases Events Activities

BPI-2011 1143 150291 624
BPI-2012 13087 164506 23
BPI-2014 46616 466737 39
BPI-2015 1199 52217 398
BPI-2016 557 286075 312
BPI-2017 31509 475306 24

Process discovery techniques can be evaluated us-
ing a range of indicators referring to fitness (abil-
ity to replay the observed behavior), precision
(avoiding underfitting), generalization (avoiding
overfitting), and simplicity (is the model easy to
understand) [1]. Existing indicators are less suit-
able for the evaluation of hybrid models explic-
itly capturing vagueness. Criteria involving fit-
ness, precision, and generalization can also not be measured for the informal models
produced by existing commercial process mining tools. When computing traditional
quality measures for hybrid system nets we basically ignore the sure and unsure arcs.

We applied our approach to a large number of real-life events logs and analyzed the
effects of the different parameters (tfreq , c, w, tRS

, tRW
, and treplay ) on the resulting
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Table 2. Parameters used to create the base models and their characteristics.

Log tfreq tRS
tRW

w treplay |T | |P | |F̂1| |F2| |F3| Fitness Precision Time (ms)

BPI-2011 343 0.81 0.80 0.10 0.80 38 6 4 200 6 0.84 0.04 11772
BPI-2012 3926 0.90 0.89 0.10 0.80 14 8 7 20 1 0.90 0.26 12414
BPI-2014 13985 0.90 0.90 0.10 0.80 10 5 3 13 0 0.93 0.54 21233
BPI-2015 360 0.45 0.40 0.50 0.80 59 26 24 145 75 0.74 0.05 7055
BPI-2016 445 0.50 0.50 0.10 0.80 12 2 0 31 0 0.83 0.10 31428
BPI-2017 9453 0.51 0.50 0.50 0.80 22 8 7 36 12 0.95 0.12 24772

models. In this section, we report on our findings using six data sets taken from the
well-known BPI Challenges [16].2

Table 1 shows the basic characteristics of the six event logs used: BPI-20XX refers
to the year of the corresponding BPI challenge [16] and the number of cases, events, and
unique activities (event classes) are shown. For BPI-2011, BPI-2012, and BPI-2017 we
used the full data set. For BPI-2014 we used the event log for incidents, for BPI-2015
we used the data of the first municipality, and for BPI-2016 we used the event log with
click data. These selections were made to focus on a particular process or organization.

We first selected initial parameters for each of the six event logs in Table 1 to create
six “reasonable” base models. To create the base models we interactively set the thresh-
olds in such a way that the underlying graph is connected. treplay was set in such way
that a reasonable number of places remained. Table 2 shows the settings used and some
of the characteristics of the resulting hybrid process models.

Obviously different parameter settings lead to different models. For example, if
treplay is set to 1, then (by definition) the fitness will be 1. Similarly, the number of
unsure arcs is directly affected by tRW

. If tRW
= tRS

, then (by definition) there will be
no unsure arcs. Column |T | shows the number of retained activities. Columns |P | and
|F̂1| provide insights in the dominant and clear behavior captured in terms of normal
arcs. Columns |F2| and |F3| indicate the number of sure and unsure arcs. These num-
bers give insights in the complexity of the models (simplicity dimension). Fitness and
precision are computed using the techniques from [4] and [5] while ignoring the sure
and unsure arcs (i.e., only considering the normal places and arcs).

The fitness values in Table 2 are as expected. It is possible to improve fitness at the
cost of having fewer places. The precision values in Table 2 vary widely. Precision is
very low for BPI-2011 and BPI-2015. However, for these models there are many sure
arcs showing the added value of our hybrid approach. Things that cannot be expressed in
terms of reasonable places (treplay = 0.8) can still be expressed. Traditional approaches
would be forced to accept places that have a lower quality or ignore the causalities ob-
served. For example, the inductive miner would generate underfitting models or models
focusing on the mainstream behavior only.

The computation times (last column in Table 2) are in milliseconds. Clearly, the
size of the event log and computation time positively correlate. Moreover, the fewer
candidate places the faster the second step is performed. These numbers show that the
approach is already quite fast compared to other approaches returning a formal model
2 The reader is invited to redo the experiments using the latest version of ProM , the Hybrid-

Miner package (promtools.org), and the publicly available data sets used here [16].
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(all models are computed in less than 25 seconds). Implementation-wise there is ample
room for improvement, showing that the approach itself is highly scalable.

For each of the six event logs, we used the baseline values for w, tRS
, tRW

, treplay ,
and tfreq (Table 2) as a starting point. (We fixed the value of c to its default value:
c = 1.) Next, we varied some of the key parameters one-by-one while keeping the
baseline values for the other parameters fixed: treplay ∈ {0.7, 0.8, 0.9, 1.0}, w ∈
{0.0, 0.25, 0.5, 0.75, 1.0}, tRS

∈ {0.5, 0.6, 0.7, 0.8, 0.9}, and tRW
∈ {0.5, 0.6, 0.7,

0.8, 0.9} (such that tRS
≥ tRW

). These results are discussed in detail in a technical
report [2]. Given the limited space, we only summarize the main findings here.

– Increasing the value of treplay improves fitness of the model because places that are
not perfectly fitting are removed. The precision of the model typically decreases
when treplay goes up. Moreover, the removal of places leads to an increase in sure
arcs.

– Increasing the value of w has a marginal effect on fitness and precision. For some
of the event logs, precision is better for lower values ofw (i.e., more weight is given
to Rel2 c(a, b, L)).

– Increasing the value of tRS
leads to fewer connections through places and sure arcs.

This can only improve fitness. However, the effect is moderate and heavily depends
on treplay . Precision tends to go down when tRS

goes up.
– Increasing the value of tRW

, by definition, has no effect on precision and fitness
and only affects the number of unsure arcs.

In summary, the discovery approach works in a predictable manner. Using the param-
eters the analyst can influence the characteristics of the discovered model in a fast and
reliable manner. It is possible to express “vagueness” in terms of sure and unsure arcs.
If there is not enough evidence in the data to justify the addition of many “good” places,
then the resulting model will have a low precision. Fitness can be controlled directly by
treplay . We refer to the technical report for detailed experimental results [2], but ac-
knowledge that additional evaluations are needed (involving new metrics and groups of
users).

8 Related Work

The work reported in this paper was inspired by the work of Herrmann et al. [9, 10]
who argue that modeling “requires the representation of those parts of knowledge which
cannot be stated definitely and have to be modeled vaguely”. They propose annotations
to make vagueness explicit. In [9, 10] the goal is to model vagueness, but we aim to
automatically discover hybrid models supporting both vagueness and formal semantics.

Hybrid process models are related to the partial models considered in software en-
gineering [7, 14]. These partial models can be completed into formal models and do not
consider data-driven uncertainty. In fact, these partial models are closer to configurable
process models representing sets of concrete models

In literature one can find a range of process discovery approaches that produce for-
mal models [1]. The α-algorithm [3] and its variants produce a Petri net. Approaches
based on state-based regions [15] and language-based regions [6, 18] also discover Petri
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nets. The more recently developed inductive mining approaches produce process trees
that can be easily converted to Petri nets or similar [11, 12, 13].

Commercial process mining tools typically produce informal models. These are
often based on the first phases of the heuristic miner [17] (dependency graph) or the
fuzzy miner [8] (not allowing for any form of formal reasoning).

It is impossible to give a complete overview of all discovery approaches here. How-
ever,as far as we know there exist on other discovery approaches that return hybrid
models having both formal and informal elements.

9 Conclusion

In this paper we advocated the use of hybrid models to combine the best of two worlds:
commercial tools producing informal models and discovery approaches providing for-
mal guarantees. We provided a concrete realization of our hybrid discovery approach
using hybrid Petri nets. The ideas are not limited to Petri nets and could be applied
to other types of process models (e.g., BPMN models with explicit gateways for the
clear and dominant behavior and additional arcs to capture complex or less dominant
behavior). Unlike existing approaches there is no need to straightjacket behavior into a
formal model that suggests a level of confidence that is not justified. The explicit rep-
resentation of vagueness and uncertainty in hybrid process models is analogous to the
use of confidence intervals and box-and-whisker diagrams in descriptive statistics.

The approach has been fully implemented and tested on numerous real-life event
logs. The results are very promising, but there are still many open questions. In fact,
the paper should be seen as the starting point for a new branch of research in BPM and
process mining. To evaluate differences between informal, formal, and hybrid mod-
els from a user perspective, we need new evaluation criteria taking understandability
and perceived complexity into account. Future work will also include “hybrid BPMN
and UML activity diagrams” focusing on different model constructs (gateways, swim-
lanes, artifacts, etc.). Existing techniques (also supported by ProM) can already be used
to map compliance and performance indicators onto causalities expressed in terms of
explicit places. We would like to also provide approximative compliance and perfor-
mance indicators for sure and unsure arcs. Note that commercial tools show delays and
frequencies on arcs, but these indicators may be very misleading as demonstrated in
Sect. 11.4.2 of [1]. Finally, we would like to improve performance. The approach has
already a good performance. Moreover, there are several ways to further speed-up anal-
ysis (e.g., pruning using scoreglob or user-defined preferences). Moreover, computation
can be distributed in a straightforward manner (e.g., using MapReduce).
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