
Online Discovery of Cooperative Structures in
Business Processes

S.J. van Zelst, B.F. van Dongen, and W.M.P. van der Aalst

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{s.j.v.zelst,b.f.v.dongen,w.m.p.v.d.aalst}@tue.nl

Abstract. Process mining is a data-driven technique aiming to provide
novel insights and help organizations to improve their business processes.
In this paper, we focus on the cooperative aspect of process mining, i.e.,
discovering networks of cooperating resources that together perform pro-
cesses. We use online streams of events as an input rather than event logs,
which are typically used in an off-line setting. We present the Online Co-
operative Network (OCN) framework, which defines online cooperative
resource network discovery in a generic way. A prototypical implemen-
tation of the framework is available in the open source process mining
toolkit ProM. By means of an empirical evaluation we show the ap-
plicability of the framework in the streaming domain. The techniques
presented operate in a real time fashion and are able to handle unlim-
ited amounts of data. Moreover, the implementation allows to visualize
network dynamics, which helps in gaining insights in changes in the ex-
ecution of the underlying business process.

Keywords: Process Mining · Process Enhancement · Event Streams ·
Cooperative Resource Networks

1 Introduction

The goal of process mining [1] is to improve business processes by analyzing
event logs. An event log captures the behavior of a business process by means of
sequences of executed business process events. Process mining consists of three
fields: process discovery, conformance checking and process enhancement. Pro-
cess discovery aims at discovering a process model based on an event log. Con-
formance checking aims at assessing whether a process model conforms w.r.t.
behavior recorded in an event log. Finally, process enhancement aims at improv-
ing business process models, e.g., by discovering resource interaction, applying
bottleneck analysis, etc. Most work within process mining is devoted to pro-
cess discovery, however, various other perspectives are of interest in context of
business processes. In particular, the organizational perspective is of interest,
i.e., interaction of employees, resources, devices etc. within the business pro-
cess. Analyzing this perspective is useful for process enhancement as it reveals
deficiencies in resource utilization, cooperation, sub-contracting schemes etc.

Work aiming at the organizational perspective [2], [15], [10], [14], typically
use event logs as a primary input, and thus result in a historical/static view.
Processes are subject to change and evolution, hence, we are often interested in
a recent/dynamic view of the process. The tight alignment of IT and business
processes enables us to capture events at the moment they occur. Analyzing
such real-time, online streams of events enables us to inspect a recent view
of the process. However, the high emission rate and potential unboundedness
of the event stream forces us to design novel efficient methods that are able
to cope with infinite data. Additionally, as the number of events recorded for
operational processes increases tremendously each year, and, new data sources
become intertwined with operational processes (sensor networks, mobile devices,
etc.), event logs may exceed a computer’s physical memory and hard disk(s). As
we assume event streams to be infinite, the techniques presented in this paper
additionally allow us to analyze conventional event logs of arbitrary size.

In this paper, we present the Online Cooperative Networks (OCN) frame-
work, i.e., a new organizational process enhancement method that describes
online cooperative resource network discovery. The framework allows the user
to view multiple cooperative resource networks, based on a single event stream.
Events on the stream are assumed to (at least) contain information about (1)
the case for which the event occurred, (2) the activity that was performed and
(3) the resource that performed the activity. The framework defines means to
organize the data observed on the stream in a finite data structure. The user
inspects a cooperative network in which new events are incorporated within the
network as fast as possible, i.e., in a real-time and incremental fashion. Whenever
the user decides to inspect a different network, e.g., changing from a handover of
work to a reassignment network, an initial network is computed on the basis of
the current data structure. Hence, a property of the proposed approach is that
such switch does not need any form of warm-up period, i.e., after initialization
of the network new events are immediately incorporated in the network.

The remainder of this paper is organized as follows. In Section 2, we present
background material covering conventional discovery of cooperative resource net-
works. In Section 3 we present the OCN framework. Section 4 details on the im-
plementation of the OCN framework within the process mining toolkit ProM [16].
In Section 5, we present empirical results w.r.t. event processing time, memory
usage etc. of some example cooperative metrics. Section 7 concludes the paper
and discusses future work.

2 Background

This section provides a brief summary of the typical input and output artifacts of
conventional cooperative resource network discovery. To ease the reader, we build
on top of the following mathematical notation. Let X = {e1, e2, ..., en} denote
a set of n elements. N = {1, 2, 3, ...} denotes natural numbers, N0 = N ∪ {0}
includes 0, and R denotes real numbers. A sequence σ of length n over set X
is a function σ : {1, 2, ..., n} → X. A sequence is written as σ = 〈σ(1), σ(2), ...,

Table 1: Fictional example of events stored within an information system.
Identifier Case Activity Time-Stamp Resource

...
1 c1 Register Payment 2016/07/07 09:05:34 John
2 c2 Create Fine 2016/07/07 09:07:34 Lucy
3 c1 Close Case 2016/07/07 09:08:15 Rob
4 c2 Send Fine 2016/07/07 09:15:23 Rob
5 c2 Register Payment 2016/07/07 10:02:23 John
...

σ(n)〉. For concatenation we write σ1 · σ2, and, ε denotes the empty sequence.
X∗ denotes the set of all possible sequences over X.

2.1 Event Logs

A single execution of a process is referred to as a process instance. A process
instance is related to a specific case for which the process is being executed.
As an example consider a business process handling road fines. Typically, the
process is executed per driver’s offense, hence, an offense can be considered a
case. The actual activities performed for a case may depend on data attributes
related to the case. If the offense is related to illegal parking, sending a fine to
the offender suffices. However, if the offense is related to speeding, apart from
sending a fine, the driver’s license might need to be revoked.

The activities executed for a process are stored in a company’s information
system’s database. Consider Table 1 as an example, where a row describes the
individual execution of an activity, which we refer to as an event. Events are
unique and have a unique identifier. Events describe the case, at what time,
and, by which resource an activity was performed. Often other data attributes
are available for an event, i.e., an event is a vector/tuple of data values, e.g., (5,
c2, Register Payment, 2016/07/07 10:02:23, John). Based on the case column
we are able to extract a sequence of events executed for a specific case, also
referred to as a trace. In this paper we are merely interested in the activity
performed for a case, and, the resource executing the activity. Let I denote the
universe of unique identifiers, let C denote the universe of cases, A the universe
of activities and R the universe of resources. We define the universe of events
as E = (I × C × A × R). An event (ι, c, a, r) ∈ E is a quadruple describing
(1) the event’s unique identifier ι, (2) the corresponding case c, (3) activity a
that was performed, and, (4) resource r that performed the activity. To access
individual elements of an event, we define projection functions, i.e., given event
e = (ι, c, a, r) ∈ E , we have πI(e) = ι, πC(e) = c, πA(e) = a and πR(e) = r.

An event log acts as the main source of input for most conventional process
mining techniques. An event log is typically extracted from a company’s infor-
mation system and is defined as a set of traces. The order of events within a
trace is usually imposed by time-stamp information.

Definition 1 (Event Log). Let E denote the universe of events. An event log
L is a set of traces, i.e., L ⊆ E∗. A case c ∈ C uniquely defines a trace, i.e., for

all σ ∈ L and 1 ≤ i, j ≤ |σ| we have πC(σ(i)) = πC(σ(j)), and, for all σ, σ′ ∈ L
s.t. σ 6= σ′, and, 1 ≤ i ≤ |σ|, 1 ≤ j ≤ |σ′|, we have πC(σ(i)) 6= πC(σ

′(j)). Event
are unique, i.e., for all σ ∈ L and 1 ≤ i < j ≤ |σ| we have σ(i) 6= σ(j), and, for
any σ, σ′ ∈ L and 1 ≤ i ≤ |σ|, 1 ≤ j ≤ |σ′|, we have σ(i) 6= σ′(j).

As an example of a trace consider case c2 in Table 1 describing σc2 = 〈(2, c2,
Create Fine, Lucy), (4, c2, Send Fine, Rob), (5, c2, Register Payment, John)〉.

Note that multiple traces might exist that share the same type of behavior,
i.e., there may be more traces for some case ci of the form 〈(x, ci, Create Fine,
Lucy), (y, ci, Send Fine, Rob), (z, ci, Register Payment, John)〉.

2.2 Discovering Cooperative Resource Networks

In this section we present a general definition of resource networks based on
event logs which we, in Section 3, adopt into an event stream context.

In [2] a wide range of cooperative metrics is defined on the basis of event
logs. In essence, all these metrics are defined over pairs of resources, e.g., given a
certain pair of resources, what is the value for the handover of work metric?, how
strong is the working together metric?, what is the Minkowski distance for the
joint case metric? etc. Given the universe of resources R, we define a cooperative
metric µ as µ : R×R → R. A cooperative resource network is simply a weighted
(un)directed graph, having some V ⊆ R as vertices, a set E ⊆ R×R as edges,
and, µ as an edge weight function.

Definition 2 (Cooperative Resource Network). Let R denote the universe
of resources, let V ⊆ R, let E ⊆ R×R, and, let µ : R×R → R be a cooperative
metric. Resource Network N is a weighted (un)directed graph N = (V,E, µ).

In Definition 2, V , E and µ are not connected. In practice, µ often defines V and
E, e.g., given a metric µ s.t. 0 ≤ µ(r1, r2) ≤ 1,∀r1, r2 ∈ R, then V = {r ∈ R |
∃r′∈R(µ(r, r′) > 0 ∨ µ(r′, r) > 0), and, E = {(r1, r2) ∈ R×R | µ(r1, r2) > 0}.

Consider the following handover of work metric as an example. Given a non-
empty event log L and a pair of resources r1, r2 ∈ R, for any σ ∈ L we define:

|r1 �σ r2| =
|σ|−1∑
i=1

{
1, iff πR(σ(i)) = r1 ∧ πR(σ(i+ 1)) = r2

0, otherwise
(1)

The relation |r1 �σ r2| denotes the number of times a handover occurs from
resource r1 to resource r2 within σ. Reconsider the event data depicted in Table 1
where, for trace σc2 related to case c2, we have |Lucy �σc2 Rob| = 1, |Rob �σc2
Lucy| = 0 etc. In general |r1 �σ r2| describes a local trace-based metric. To
express handover of work in a global, event log based metric, we define r1 BL r2:

r1 BL r2 =

(∑
σ∈L
|r1 �σ r2|

)/(∑
σ∈L

(|σ| − 1)

)
(2)

As a simple example, assume that cases c1 and c2 are the only two traces in the
example event data of Table 1. Observe that we have John BL Rob = Lucy BL

Rob = Rob BL John = 1
3 . In [2] a more generalized definition is presented

that allows us to incorporate relations between resources at longer distances,
e.g., given a distance of 2, Lucy also hands over work to John in case c2. For
simplicity we only consider relations of distance 1 within this paper.

3 Discovering Cooperative Structures Online

When we apply BL on a real event log, e.g., the BPI Challenge 2012 event log [9],
we get the network depicted in Fig. 1.

Fig. 1: Result of calculating BL based on
the BPI Challenge 2012 [9].

Apart from observing that var-
ious resources hand over work to
each other, we are not able to gain
any valuable insights. Moreover, we
are not able to deduce whether cer-
tain resources became more/less ac-
tive, stopped working etc. Due to
the tight alignment of IT and busi-
ness processes we are able to capture
events in an real-time fashion, i.e., at
the moment they occur. Therefore, we
propose to discover social networks on
the basis of such event streams. To
this purpose, we present the Online
Cooperative Network (OCN) frame-
work, which allows us to discover and
visualize a live view of different co-
operative networks, based on event
streams. Additionally we discuss the

update complexity of resource network metrics in a streaming context. Prior to
this, we define the notion of event streams, which we formalize as a possibly
infinite sequence of events.

Definition 3 (Event Stream). Let E denote the universe of events. An event
stream is a (infinite) sequence of events, i.e., S : N → E. Given some i ∈ N,
S(i) denotes the ith event on the event stream. Each event in an event stream
is unique, i.e., S is injective: for i, j ∈ N S(i) = S(j) =⇒ i = j.

Note that event logs and event streams differ significantly. First, an event
log has final information regarding cases, i.e., each trace is completed and thus
the information on some case c does not change. For event streams this is not
the case, i.e., after receiving the first i events we have seen j events related
to c, (j ≤ i). Within the next i′ activities we may see j′ events related to
case c, (j′ ≤ i′). Thus, the trace of case c after receiving i events may differ
from the trace for case c after receiving i + i′ events. Second, an event log is
assumed to be finite, whereas we assume event streams to be infinite. Hence, we
need ways to temporarily store traces seen on the event stream, and moreover,

ways to remove events and/or traces at some point in time. Since transforming
conventional event logs to an event stream is trivial, we are able to analyze any
event log with the proposed techniques.

3.1 The OCN Framework

Given a stream of events, we are interested in constructing resource networks.
Since multiple cooperative metrics are defined, we aim at designing a framework
that allows us to discover several different networks on an event stream. More-
over, the user needs to be able to seamlessly switch between different networks.
Hence, we present the OCN framework, depicted in Fig. 2, which describes this
in a generic way.

From each new event, (activity,resource)-pair information (i.e. (a, r)) is ex-
tracted. In case administration DC , we store for each case the (partial) sequence
of (activity,resource)-pairs seen so far. Update function λ constantly updates DC ,
and handles case/event deletion. At any point in time, we are able to query DC
what sequences of events are stored for a (collection) of case(s). Due to the finite
nature of DC , enforced by λ, the answer to such query changes over time, i.e.,
DC discards old data. After receiving i events, the user inspects some cooperative
network N j

i . Network N j
i is constantly updated by γj , in a real-time fashion.

The information stored in DC allows the user to switch the current network N j
i

to an other network N j′

i , e.g., changing from a handover of work network to a
reassignment network.

We identify four main components: (1) case administration DC , (2) case ad-
ministration update function λ, (3) resource network builders γ1, γ2, ..., γn, and,
(4) resource networks N1, N2, ..., Nn. Only one network builder is active at a
specific point in time (γj in Fig. 2). In the remainder of this section we discuss
the components in more detail.

Case Administration Most cooperative metrics are defined on the basis of
resource information present in traces within event logs. Hence, in an event

..., (ι, c, a, r), ...

Event Stream S
λ

Case Admin. Updater Case Administration

DC

γ1

•

•
•

N1
i

...
...

...

γj

•

•
•

N j
iActive Network

...
...

...

γn

•

•
•

Nn
i

User

Fig. 2: Schematic overview of the OCN framework.

c1

c2

...

cn

...

C
a
se

s

〈(a1, r1)〉

〈(a1, r1), (a2, r2)〉

〈(a1, r1), (a2, r2), (a3, r3)〉

...

Receive (x, c1, a2, r2)

c1

c2

...

cn

...

C
a
se

s

∅

〈(a1, r1), (a2, r2)〉

〈(a1, r1), (a2, r2), (a3, r3)〉

...

Fig. 3: A simple example of a case administration DC .

stream setting, we need a data structure, i.e., a case administration, that allows
us to determine, for a given case identifier, what sequence of events has thus
far been emitted on the event stream. Since we receive events over time, the
case administration evolves over time. We define the case administration as a
function DC : (N0 × C) → (A × R)∗. Given i ∈ N0 and c ∈ C, DC(i, c) is
the sequence of (activity,resource)-pairs related to case c observed on the event
stream, after i events. This sequence is not necessarily containing all events ever
observed/observable for case c, i.e., as the memory is finite, events related to
case c might be removed, and/or, new events related to case c might arrive later.

To keep the case administration up to date, we need some update function λ,
which updates the case administration based on the ith event. A simple initial
design of a case administration is depicted in Fig. 3. We maintain a collection,
e.g., an array, consisting of case identifiers seen earlier on the event stream.
Each case identifier points to a corresponding sequence. For case c1 we have
seen 〈a1, r1〉. If we receive new event (x, c1, a2, r2), we update c1’s pointer to
〈(a1, r1), (a2, r2)〉. As there is no case identifier pointing to 〈(ai, ri)〉 we remove
it from the collection of sequences. Since the stream is possibly infinite, we need
an aging mechanism that allows us to forget some of the data elements stored
in the case administration. We identify two aging strategies, i.e., case level and
event level. In the case level strategy, we store all events for a given case identifier
until we decide to completely remove the case, and all its related events, from
the administration. In the event level strategy, we remove individual events from
the case administration.

There are several ways to design case level strategy data structures, primarily
based on the field of data stream analysis [13], [3], [11]. For example, if we are
interested in maintaining a view of the most recent cases, we use a decay function
on the cases, that allows us to determine whether a case is eligible for deletion [8].
If we are on the other hand interested in the most active, or, most frequently
updated cases, we are able to use frequency approximation algorithms defined
for data streams [7]. When the underlying technique removes a case due to its
age or relative infrequency, the associated sequence is removed.

In the theoretical case where we only have one active case within the process
that has an infinite sequence of different events, the case level strategy does not
work. In such case we adopt an event based strategy. As an example consider the
following approach. We maintain three data structures, two of which as depicted

in Fig. 3, i.e., a collection of cases pointing to a collection of sequences. The
third data structure is simply an array consisting of case identifiers that have
been emitted on the stream. Note that we store each case identifier of each
event, i.e., if we have received n events related to case c, we have (at most) n
occurrences of c within the array. We use a decay function to apply aging on the
elements of the case identifier array [8]. Whenever the decay function indicates
that a case is eligible for deletion we remove the first (activity,resource)-pair of
the sequence that the case is currently pointing to. If the case now points to the
empty sequence, we remove it from the collection of cases.

Networks & Builders We maintain knowledge about the cases seen so far in
memory to be able to switch from one resource network to the other. Hence, the
network discovery components γ1, γ2, ..., γn, consist of two separate tasks: (1)
initialization of the network based on the current state of DC and (2) update of
the network based on new events flowing in. The first step, i.e., initialization,
equals the conventional computation of the resource network. The second step,
i.e., updating, is of particular interest. Consider that we obtain some network
Ni−1, based on DC after i − 1 events, and, we receive ith event (ι, c, a, r). The
new event either introduces, or, updates a network metric value for a pair of
resources. Also, the metric value for a pair of resources usually depends on a
global property, e.g., the divisor of BL, hence the new event also affects the
metric value of other pairs of resources within the network. Thus, network Ni,
based on DC after i events, is very likely to differ from the previous network Ni−1,
i.e., a new handover is added/removed due to the new event/removed data. From
an implementation perspective, we need to refresh the internal data structures
that maintain the network after each new event. The complexity of this operation
is expected to grow in terms of the network size. For most metrics we additionally
need to design supporting data structures that allow us to recompute the actual
metric value. For example, to be able to compute the BL metric, for each resource
pair, we need to maintain a denominator and a divisor. The denominator is
resource pair specific, whereas the divisor can be maintained globally.

Some supporting data structures turn out to be computable in an incremen-
tal fashion. If the incremental computation of the data structures is inexpensive,
we are able to update them in a real-time fashion. However, some metrics do
not support inexpensive incremental updates of their supporting data structures,
i.e., we potentially need to recompute them from scratch after a new event. In
such case we need a more periodic update scheme of the network in order to
maintain the network in a real-time fasion. Hence, we propose two network up-
date strategies: right-time, i.e. at the user’s request, and real-time, i.e. updating
after each event, which define how we need to update our network over time.

3.2 Network Update Strategies

If we reconsider the handover of work metric as presented in Section 2.2, design-
ing supporting data structures that allow us to maintain the metric is straightfor-
ward. We maintain a map M� : R×R → N0, that maintains the denominator of

r1 BD
C

i r2, i.e.,
∑
c∈C |r1 �DC(i,c) r2| as the number of received events i increases

over time. Moreover, since the divisor of r1 BD
C

i r2 has the same value for all
possible combinations of r1 and r2 we maintain it i.e.,

∑
c∈C(|DC(i, c)| − 1), as a

single integer d ∈ N. Initially we have M�(r1, r2) = 0, ∀r1, r2 ∈ R. Assume that
after a while, we receive some ith event (ι′, c′, a′, r′) s.t. we have DCi−1(c′) = σ,
with σ 6= ε. Thus, at time i, we have DCi (c′) = σ ·〈(a′, r′)〉. Moreover, assume that
no case is removed from the case administration after receiving the ith event.

Observe that for any r1, r2 ∈ R, for the denominator of r1 BD
C

i r2, we have:

∑
c∈C
|r1 �DC(i,c) r2| =

 ∑
c∈C\{c′}

|r1 �DC(i,c) r2|

+ |r1 �σ·〈(a′,r′)〉 r2| (3)

We assumed that no sequence was removed from the case administration, thus:∑
c∈C\{c′}

|r1 �DC(i,c) r2| =
∑

c∈C\{c′}

|r1 �DC(i−1,c) r2| (4)

We also have |r1 �σ·〈(a′,r′)〉 r2| = |r1 �σ r2| + b, where b = 1 if r′ = r2, and,
πR(σ(|σ|)) = r1, else, b = 0. Combing this with Equations 3 and 4 yields: ∑

c∈C\{c′}

|r1 �DC(i−1,c) r2|

+ |r1 �σ r2|+b =

(∑
c∈C
|r1 �DC(i−1,c) r2|

)
+b (5)

Thus, the only action we need to perform is increasing the value of M�(r, r′) by
one, where r denotes the resource that executed the last event of σ. Note that,
for the divisor, we are able to deduce di = di−1 + 1. If we drop the assumption
that no case is removed from the case administration, we need to reduce the
values of M� and d accordingly. Updating d based on a dropped trace σ′ is
trivial, i.e., we simply subtract |σ′| − 1. For M� we iterate over σ′ and for each
pair of resources we decrease the corresponding M� value by one.

Clearly, the B metric is computable incrementally. Hence, the B metric is
an example of a metric that we classify as a real-time metric. We define cooper-
ative metrics to be real-time if it is possible to update the metric’s supporting
data structures by means of an incremental update. However, since the divisor
changes, we need to recompute all metric values for those r1, r2 ∈ R with a
non-zero M� value. Thus, in worst case this operation has complexity O(|R|2).

There are examples of cooperative metrics that do not meet the real-time
requirement. An example of such metric is the boolean-causal variation of the
handover of work metric [2]. First, we introduce the notion of causality, after
which we introduce the metric. Consider example event log L2, in which we only
record sequences of activities: L2 = {〈a1, a2, a3, a4〉, 〈a1, a3, a2, a4〉}. In the event
log, a1 is directly followed by a2, which we write as a1 > a2. We additionally
have a1 > a3, a2 > a3, a2 > a4, a3 > a2, and, a3 > a4. Two activities ai and aj
are said to be in a causal relation, i.e., ai → aj , iff ai > aj and aj ≯ ai. Thus,
for the example event log we have a1 → a2, a1 → a3, a2 → a4, and, a3 → a4.

Given a sequence σ of activity-resource pairs, we define relation r1 �σ r2 which
specifies that resource r1 hands over work of a case to resource r2, given that
the corresponding executed activities are in a causal relation. Moreover, relation
r1 �σ r2 does not count the number of occurrences of such handover, i.e., it only
captures the fact that such handover occurred at least once in the trace.

r1 �σ r2 =
{

1 iff ∃1≤i<|σ|−1(πR(σ(i)) = r1 ∧ πR(σ(i+ 1)) = r2 ∧ πA(σ(i))→ πA(σ(i+ 1)))

0 otherwise

(6)

We now define a corresponding cooperative network metric r1 DD
C

i r2 that
captures this globally, based on event streams. Let i denote the index of the
latest received event on the event stream, then:

r1 DD
C

i r2 =

(∑
c∈C

r1 �DC(i,c) r2

)/
|{c ∈ C | DC(i, c) 6= ε}|

Maintaining the divisor is in this case trivial. We again maintain M� :
(R × R) → N0, which represents the denominator of the D metric. However,
to maintain the metric we need to additionally keep tack of the causal relations
present within the traces. To maintain the causal relations we maintain a map
M> : (A ×A) → N0 that maintains the > relation. Based on M> we maintain
a set M→ that maintains causal pairs. When we receive ith event e = (ι, c, a, r)
we increment entry M>(a′, a) with one, where a′ denotes the last activity of
DC(i− 1, c). Next, we update M→ and M�. There are four different possibilities
related to the causality of a′ and a, all having different implications on the way
D is computed, and, the corresponding computational complexity.

1. Before processing e, we have M>(a′, a) > 0 and M>(a, a′) = 0, i.e., a′ → a
already holds. We check whether σ contains structure 〈..., (a′′, r′), (a′′′, r),
...〉, s.t. a′′ → a′′′. If so, we do not update M�(r′, r), otherwise, we increase
M�(r′, r) with one.

2. Before processing e, we have M>(a′, a) = 0 and M>(a, a′) = 0, i.e., a′ → a
starts to hold. We apply the same procedure as described in 1.

3. Before processing e, we have M>(a′, a) > 0 and M>(a, a′) > 0, i.e., a′ → a
did not and still does not hold. There is no need to update M�.

4. Before processing e, we have M>(a′, a) = 0 and M>(a, a′) > 0, i.e., a→ a′

did hold, though no longer holds. We now need to remove the contribution of
all cases that have a trace containing structure 〈..., (a, r′′), (a′, r′′′), ...〉. We
only need to reduce the M�(r′′, r′′′) value if within the same trace there is
no structure of the form 〈..., (a′′, r′′), (a′′′, r′′′), ...〉 s.t. a′′ → a′′′. Hence, we
need to loop over all traces currently present in the case administration.

The fourth case is problematic from an incremental point of view. Within all
other cases, it suffices to analyze the trace related to c within the case admin-
istration. If the fourth case applies we need to check all cases within the case
administration in order to update M�. Depending on the size of the case admin-
istration this procedure might be time consuming. Moreover, the nature of the

underlying process, i.e., stable without a lot of variation vs. unstable/changing
with variation in terms of causalities influences the complexity. When we remove
cases from the case administration, we again need to check the four possible sce-
nario’s w.r.t. modifications in causality. In case of removal, a casual relation that
is added results in the need to rescan the case administration.

The D metric is an example of a right-time metric, i.e., instead of continu-
ously maintaining the supporting data structures, it should be recomputed at
regular intervals, or, at the user’s request. In Section 5 we empirically assess the
computational complexity of both metrics B and D. We also assess how often
we need to recompute the internal data structures of D based on real data, i.e.,
how often does a causal change happen? Prior to this, in Section 4, we present
details regarding the implementation of the OCN framework.

4 Implementation

Fig. 4: The OCN framework in ProM.

The OCN framework is implemented
in the ProM [16] (http://promtools.
org) framework (Fig. 4). ProM is the
open-source standard for implement-
ing process mining techniques. The
OCN framework is distributed within
the StreamSocialNetworks package.1

The current implementation provides
support for: Generalized Handover of
Work Metrics [2, Definition 4.4], Gen-
eralized In-Between Metrics [2, Definition 4.7], Working Together Metrics [2,
Definition 4.8], and, Joint Activity Metrics based on Minkowski distance, Ham-
ming distance and Pearson’s correlation coefficent [2, Definition 4.10]. Moreover,
the framework is easily extensible to support more cooperative network metrics.

Within the implementation, instead of maintaining sequences of events, a
prefix-tree of (activity,resource)-pairs is built in memory. Each case within the
case administration points to a node in the tree, that represents the latest
(activity,resource)-pair received for the case. By walking from the root to a node
pointed at by a case identifier, we get the corresponding trace. The user can
choose between two visualizations: (1) visualize each consecutive network, or,
(2) makes use of windows in order to visualize changes within the network(s).
To visualize changes, the visualizer stores two windows each containing w net-
works. For each link within the network it computes the average corresponding
metric value for both windows. The width of the links within the network are
based on the relative change of the average link values. A link labeled with new

indicates a new relation, a ↑ indicates an increase w.r.t. the previous window, a
↓ indicates a decrease, and a × label indicates that the relations was present in
the first window, though is no longer present in the second window. The size and

1 https://svn.win.tue.nl/repos/prom/Packages/StreamSocialNetworks/Trunk

Fig. 5: Three consecutive window-based cooperative networks based on an event
stream of the BPI Challenge 2012 event log [9].

color of the resources within the network are based on their relative involvement
within the network as a whole.

To illustrate the usefulness and applicability of the framework, consider Fig. 5
which depict a sequence of subsequent window based cooperative networks. The
networks depict the handover of work metric with a maximum distance of 5
events, a fading factor of 0.75, and, a window-size w of 50. In the first network,
all resources hand over work to themselves. Some new relations become present,
and, resource 10939 (top left) is completely new. Resource 112 is the most active
resource, and involved in the most dominant relations (although its self-loop
decreased in relative frequency). In the second network, we observe that resource
10912 became more active. Resource 10939 now also hands over work to resource
10912. Again a new resource became active, i.e., resource 11019 (bottom right),
and, the relations that involve resource 10862 became relatively less frequent. In

the third network, again a lot of new behavior becomes apparent. Due to the self-
loops, we conclude that most resources execute multiple subsequent activities for
a case, or, execute subsequent activities within a span of at most five activities.
There are several other interesting observations that we can derive from Fig. 5.

5 Evaluation

In this section we assess the scalability of the metrics described in Section 3.2,
i.e., B and D.2 For the experiments we created an event stream based on the BPI
Challenge 2012 event log [9]. The event log contains real event data, related to a
loan application process. In total, the event log contains 262.200 events. Of these
events, 244.190 events actually describe what resource executed the activity.

Within the event stream, events are ordered based on timestamps. Using
the event stream, for each metric we measured: (1) time needed to refresh the
supporting data structure(s) (in nano seconds), (2) time needed to refresh the
whole network (in nano seconds), (3) total memory consumption of the data
structure(s) (in bytes), (4) network size (in number of edges). Moreover, for each
metric we investigated two scenario’s: (1) no restriction on the case administra-
tion’s available memory, (2) finite memory restriction on the case administration
(case level removal strategy) using a forward decay model [8] with an exponen-
tial decay function with a decay rate of 0.01 and a removal threshold of 0.01.
To reduce the effects of outliers in terms of run time measurements, e.g. caused
by the java garbage collector, we ran each experiment ten times, removed the
minimal and maximal measurement values, and, averaged the remaining eight
values. Additionally, in some charts the y-axes are restricted in order to highlight
the overall trends, instead of outliers.

In Fig. 6 the results of discovering the B metric, without any restriction on
the available memory, are depicted. In Fig. 6a the memory usage combined with
the data structure update time are depicted. Note that, since we do not restrict
memory usage, no cases are removed from the case administration. As a result,
the memory usage is steadily increasing. The data structure update time only
consists of incrementally updating the divisor and the denominator values of the
resource pairs affected by the update. We observe that initially there are some
high values in terms of update time w.r.t. the overall trend. This is likely to
be related to initialization of the underlying data structure. Then, after a short
period of increasing update time values, the update time seems to stabilize. In
Fig. 6b the network size combined with the network refresh time is depicted.
When comparing the network size with the memory usage depicted in Fig. 6a
we observe that they follow the exact same pattern. This makes sense since the

2 Experiments are performed on four Dell PowerEdge R520, 2 x Intel Xeon

E5-2407 v2 2.40GHz, 8 x 8 8GB RDIMM machines running Ubuntu 14.04 LTS.
Experiment source code is available at: https://svn.win.tue.nl/repos/prom/

Packages/StreamSocialNetworks/Branches/publications/2016_coopis/. Raw
experiment results are available at https://github.com/s-j-v-zelst/research/

releases/download/final/2016_coopis_experiments.tar.gz.

0 50000 100000 150000 200000 250000

0
20

00
0

60
00

0

Events

N
an

o
Se

co
nd

s

2e
+0

5
4e

+0
5

6e
+0

5
By

te
s

Data Structure Update
Memory Usage

(a) Data structure updates and memory.

0 50000 100000 150000 200000 2500000e
+0

0
4e

+0
5

8e
+0

5

Events

N
an

o
Se

co
nd

s

0
50

0
15

00
25

00
Ed

ge
s

Network Refresh
Network Size

(b) Network refresh time and size.

Fig. 6: Results of discovering the B metric without memory restrictions.

0 50000 100000 150000 200000 250000

0
20

00
0

60
00

0

Events

N
an

o
Se

co
nd

s

16
50

00
17

50
00

18
50

00
By

te
s

Data Structure Update
Memory Usage

(a) Data structure updates and memory.

0 50000 100000 150000 200000 250000

0
40

00
0

10
00

00

Events

N
an

o
Se

co
nd

s

0
40

80
12

0
Ed

ge
s

Network Refresh
Network Size

(b) Network refresh time and network size.

Fig. 7: Results of discovering the B metric with memory restrictions.

larger the network, the more absolute and relative values we need to store. The
time to refresh the network follows the same shape. This is as expected as we
need to calculate more relative values as the network size increases.

In Fig. 7 the results of discovering the B metric, with finite memory re-
striction, are depicted. In Fig. 7a the memory usage combined with the data
structure update time is depicted. In this case we observe that memory usage
is fluctuating. When we compare the time needed for data structure updates,
we observe that this is now slightly higher than in Fig. 6a. This is explained by
the fact that when restricting memory to be finite, cases are dropped from the
case administration. Again, the network refresh rate follows the behavior of the
memory/network size. Due to the restrictions on memory usage, the refresh rate
of the network is now comparable to the data structure update time.

For metric D we first computed a baseline in terms update times and memory
usage, depicted in Fig. 8. Within the baseline we recompute the complete data
structure and network after each event that we receive. In Fig. 8a the baseline
without memory usage restrictions is depicted. Due to the high computational
costs, we only performed measurements for the first 25.000 events. Moreover,
we took the median values out of four experiments. The time needed to refresh
the data structure grows tremendously fast. As the figure shows, refreshing the
data structure constantly is not feasible in a streaming setting. In Fig. 8b the

0 5000 10000 15000 20000 250000.
0e

+0
0

1.
5e

+0
8

Events

N
an

o
Se

co
nd

s

20
00

00
30

00
00

40
00

00
By

te
s

Data Structure Update
Memory Usage

(a) No memory restrictions.

0 50000 100000 150000 200000 2500000e
+0

0
2e

+0
7

4e
+0

7

Events

N
an

o
Se

co
nd

s

0e
+0

0
2e

+0
5

4e
+0

5
By

te

Data Structure Update
Memory Usage

(b) Restricted memory.

Fig. 8: Baseline measurements for metric D.

0 50000 100000 150000 200000 2500000e
+0

0
2e

+0
9

4e
+0

9

Events

N
an

o
Se

co
nd

s

2e
+0

5
4e

+0
5

By
te

s
Data Structure Update
Memory Usage

(a) Data structure updates and memory.

0 50000 100000 150000 200000 250000

0
50

00
0

15
00

00

Events

N
an

o
Se

co
nd

s

Data Structure Update

(b) Data structure updates (zoomed in).

Fig. 9: Results of discovering the D metric without memory restrictions.

baseline with restricted memory use is depicted. In this case, the use of restricted
memory limits the growth in terms of the data structure update time. Still, the
times needed to update the data structure are infeasible in a streaming setting.

As explained in Section 3.2, we do not need to update the internal data
structure every single time. Hence in Fig. 9 we depict the results of the D metric
when only applying a data structure recalculation when it is indeed needed,
without memory restrictions. In Fig. 9a we observe that a recalculation of the
internal data structure does not happen very often, i.e., there is a limited number
of excessive peeks in the chart. In Fig. 9b we zoomed in on the data structure
update times. Note that, on average the time needed is much higher than in the
case of B. This makes sense as in case of D, we need to traverse the whole trace
as opposed to a single constant update in case of B.

In Fig. 10 we depict the results of the D metric with restricted memory. The
drops in memory usage in Fig. 10a correlate with the peeks in data structure
update time, indicating that a recalculation of the data structure is needed
at these points in time. Again, the network size, depicted in Fig. 10b follows
the same shape as the memory usage. Likewise the time needed to refresh the
network follows the network size.

In Table 2, for both B and D, the average values for the data structure
update time and the network refresh time are presented. The results show that

0 50000 100000 150000 200000 250000

0
10

00
00

20
00

00

Events

N
an

o
Se

co
nd

s

14
00

00
20

00
00

26
00

00
By

te

Data Structure Update
Memory Usage

(a) Data structure updates and memory.

0 50000 100000 150000 200000 250000

1e
+0

5
3e

+0
5

Events

N
an

o
Se

co
nd

s

0
10

0
20

0
30

0
40

0
Ed

ge
s

Network Refresh
Network Size

(b) Network refresh time and network size.

Fig. 10: Results of discovering the D metric without memory restrictions.

Table 2: Average values and standard deviations for the data structure update
time and network refresh time.

Metric Memory Avg./stdv. Data Structure Update (ns.) Avg./stdv. Network Refresh (ns.)
B no restriction 8.459 / 2.436 567.652 / 199.991
B restricted 2.176 / 2.285 78.817 / 9.896
D no restriction 133.333 / 14.834.991 393.190 / 138.375
D restricted 4.045 / 40.333 57.803 / 9.907

memory restriction has a positive influence on the time needed to update the
data structures and refresh the network. Moreover, the D metric, in case of
restricted memory, seems to need twice as much time compared to the B metric.
The experiments indicate that total recalculation of the network is not often
needed. Hence, it is feasible to update the metric real-time, and, whenever we
need to recompute the data structure, temporarily buffer new incoming events.
The events can be processed in real-time after the data structures are refreshed.

6 Related Work

For an elaborate overview of process mining we refer to [1]. Here, we primarily
focus on work related to the organizational perspective of process mining, and,
applications of event streams within process mining.

In [2] a collection of social network metrics is defined in context of process
mining, i.e., metrics based on event log data. The work can be regarded as one of
the foundational works of the application of social network analysis in context
of process mining. In [15] the authors extend the work of [2] with organiza-
tional model mining and information flow mining. In [10] the authors identify
that applying conventional techniques as defined in [2], [15] result in complex
networks that are not easy to understand. The authors propose to solve this
by applying hierarchical clustering on the social networks to form clusters of
similar resources. In [14] an extensible framework is proposed that allows for
extracting resource behavior time series. It allows process owners to visualize
their resource’s performance over time, using event logs as an objective source
of information. Recently, in [4], Appice et al. propose a method to analyze evolv-

ing communities within event logs. The method transforms the event log into a
finite stream of events, and, subsequently divides the stream into windows. The
method computes a resource community for each window and assess the changes
within the communities of successive windows.

In online, event stream based process mining, the majority of the work is
devoted to stream based process discovery, exclusively focusing on control-flow.
In [6] an adaptation of the Heuristics Miner [17] for the purpose of event stream
based process discovery is presented. In [12] the authors improve the imple-
mentation of [6] by the internal use of prefix-trees. In [5] methods for finding
declarative process models on the basis of event streams are proposed.

To the best of our knowledge, this is the first work that considers the orga-
nizational perspective using real time, online, and, infinite event streams.

7 Conclusion

In this paper we presented the Online Cooperative Networks (OCN) framework,
which allows us to discover several cooperative resource networks on the basis
of event streams. The OCN framework in very general and in principle allows
for many different types of analysis based on online/real-time event stream data.
Moreover, it enables us to gain insights in cooperative networks over time, rather
than providing one monolithic view. Due to the assumptions on the data, i.e.,
event streams might be infinite, the OCN Framework additionally allows us to
analyze event logs that exceed a computer’s physical memory. Therefore it can
be used to speed up the analysis of large event logs and is not limited to streams.

Our experiments show that we are able to compute cooperative networks
in an event stream setting. We have shown that there are cooperative network
metrics suitable for real-time incremental update strategies. For these metrics,
updating of the supporting data structures converges to a constant amount of
time. The time needed to update the resource network however grows in terms of
the size of the network. Additionally, we have shown that limiting the available
memory has a positive impact both on the use of memory as on the network
refresh times. However, as consequence of limited available memory we remove
cases, which slightly increases the data structure update times.

Future Work The time needed to refresh the network is strongly related to the
network size. However, in some cases, the effect of an increase in a metric’s
denominator/divisor might have little effect on the value of the metric, e.g.
1.001.337
2.133.700 = 0, 47 ≈ 1.001.338

2.133.700 . An interesting direction for future work is the
integration of fast identification whether the network should be recalculated.

Within this paper we primarily focus on the feasibility of adopting cooper-
ative resource network metrics in an event stream setting. To gain more value
out of stream based resource network analysis, an interesting direction for future
work is the assessment of different visualization methods of the evolution of the
networks. Also, extensions such as community detection etc. are of interest.

References

1. Aalst, W.M.P. van der: Process Mining - Data Science in Action, Second Edition.
Springer (2016)

2. Aalst, W.M.P. van der, Reijers, H.A., Song, M.: Discovering Social Networks from
Event Logs. Computer Supported Cooperative Work 14(6), 549–593 (2005)

3. Aggarwal, C.C. (ed.): Data Streams - Models and Algorithms, Advances in
Database Systems, vol. 31. Springer (2007)

4. Appice, A, Pietro M. di, Greco, C., Malerba, D.: Discovering and Tracking Organi-
zational Structures in Event Logs. In: Ceci, M., Loglisci, C., Manco, G., Masciari,
E., Ras, Z.W. (eds.) ECML-PKDD NFMCP, Revised Selected Papers. LNCS, vol.
9607, pp. 46–60. Springer (2015)

5. Burattin, A., Cimitile, M., Maggi, F.M., Sperduti, A.: Online Discovery of Declar-
ative Process Models from Event Streams. IEEE Trans. Services Computing 8(6),
833–846 (2015)

6. Burattin, A., Sperduti, A., Aalst, W.M.P. van der: Control-Flow Discovery from
Event Streams. In: IEEE CEC 2014. pp. 2420–2427. IEEE (2014)

7. Cormode, G., Hadjieleftheriou, M.: Methods for Finding Frequent Items in Data
Streams. VLDB J. 19(1), 3–20 (2010)

8. Cormode, G., Shkapenyuk, V., Srivastava, D., Xu, B.: Forward Decay: A Practical
Time Decay Model for Streaming Systems. In: Ioannidis, Y.E., Lee, D.L., Ng, R.T.
(eds.) IEEE ICDE. pp. 138–149. IEEE Computer Society (2009)

9. Dongen, B.F. van: BPI Challenge 2012 (2012), http://dx.doi.org/10.4121/

uuid:3926db30-f712-4394-aebc-75976070e91f

10. Ferreira, D.R., Alves, C.: Discovering User Communities in Large Event Logs. In:
Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops, Revised Selected
Papers. Lecture Notes in Business Information Processing, vol. 99, pp. 123–134.
Springer (2011)

11. Gama, J.: Knowledge Discovery from Data Streams. Chapman and Hall / CRC
Data Mining and Knowledge Discovery Series, CRC Press (2010)

12. Hassani, M., Siccha, S., Richter, F., Seidl, T.: Efficient Process Discovery From
Event Streams Using Sequential Pattern Mining. In: IEEE SSCI 2015. pp. 1366–
1373. IEEE (2015)

13. Muthukrishnan, S.: Data Streams: Algorithms and Applications. Foundations and
Trends in Theoretical Computer Science 1(2) (2005)

14. Pika, A., Wynn, M.T., Fidge, C.J., Hofstede, A.H.M. ter, Leyer, M., Aalst, W.M.P.
van der: An Extensible Framework for Analysing Resource Behaviour Using Event
Logs. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y.,
Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 564–579.
Springer (2014)

15. Song, M, Aalst, W.M.P. van der: Towards Comprehensive Support for Organiza-
tional Mining. Decision Support Systems 46(1), 300–317 (2008)

16. Verbeek, H.M.W., Buijs, J.C.A.M., Dongen, B.F. van, Aalst, W.M.P. van der:
XES, XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) Information Systems
Evolution - CAiSE Forum 2010, Selected Extended Papers. LNBIP, vol. 72, pp.
60–75. Springer (2010)

17. Weijters, A.J.M.M., Aalst, W.M.P. van der: Rediscovering Workflow Models from
Event-Based Data using Little Thumb. Integrated Computer-Aided Engineering
10(2), 151–162 (2003)

View publication statsView publication stats

https://www.researchgate.net/publication/309217996

