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Abstract. Process mining techniques aim to analyze and improve conformance
and performance of processes using event data. Process discovery is the most
prominent process-mining task: A process model is derived based on an event
log. The process model should be able to capture causalities, choices, concur-
rency, and loops. Process discovery is very challenging because of trade-offs
between fitness, simplicity, precision, and generalization. Note that event logs
typically only hold example behavior and cannot be assumed to be complete (to
avoid overfitting). Dozens of process discovery techniques have been proposed.
These use a wide range of approaches, e.g., language- or state-based regions,
genetic mining, heuristics, expectation maximization, iterative log-splitting, etc.
When models or logs become too large for analysis, the event log may be au-
tomatically decomposed or traces may be clustered before discovery. Clustering
and decomposition are done automatically, i.e., no additional information is used.
This paper proposes a different approach where a localized event log is assumed.
Events are localized by assigning a non-empty set of regions to each event. It is
assumed that regions can only interact through shared events. Consider for exam-
ple the mining of software systems. The events recorded typically explicitly refer
to parts of the system (components, services, etc.). Currently, such information is
ignored during discovery. However, references to system parts may be used to lo-
calize events. Also in other application domains, it is possible to localize events,
e.g., communication events in an organization may refer to multiple departments
(that may be seen as regions). This paper proposes a generic process discovery
approach based on localized event logs. The approach has been implemented in
ProM and experimental results show that location information indeed helps to
improve the quality of the discovered models.

1 Introduction

Today’s systems record all kinds of events, e.g., social interaction, financial transac-
tions, user-interface activities, and the use of (mobile) devices. As more and more event
data become available, the practical relevance of process mining further increases. Pro-
cess mining techniques aim to discover, monitor and improve real processes by extract-
ing knowledge from event logs [1]. The three most prominent process-mining tasks
are: (i) process discovery: learning a process model from example behavior recorded in
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an event log, (ii) conformance checking: diagnosing and quantifying discrepancies be-
tween observed behavior and modeled behavior, and (iii) performance analysis: iden-
tifying bottlenecks, delays, and inefficiencies using the timestamps of events. Starting
point for analysis is often an automatically discovered process model. In this paper, we
focus on this first step, i.e., learning a process model from event data.

Input for process discovery is an event log. Each event in such a log refers to an
activity (i.e., a well-defined step in some process) and is related to a particular case (i.e.,
a process instance). The events are partially ordered. Events related to a case describe
one “run” of the process. Such a run is often referred to as a trace. It is important to
note that an event log contains only example behavior.

Process discovery is challenging for a variety of reasons. Typically, only a frac-
tion of the behavior possible can be observed and there is no explicit information on
behaviors that are impossible, i.e., a sequence of activities that never occurred, may
still happen in the future, but may also be impossible. Moreover, mixtures of choice,
concurrency, and iteration may be difficult to uncover using merely an event log.

In this paper we propose to use “location information” present in most data sources.
We assume that each event belongs to one or more regions. A region may be a soft-
ware/hardware component, a service, a department, a team, or a geographic location.
Regions can only interact through shared events just like communication involves mul-
tiple parties. We assume that events with non-overlapping sets of regions cannot influ-
ence each other directly. This is comparable to the independence assumption often used
in statistical analysis.

Localized event logs combined with the independence assumption allow for a new
decomposition approach. A sublog of the overall event log is created for every region.
Then a submodel is created for each sublog. These submodels are merged into an overall
model. Whereas traces at the global level are often unique showing only a fraction
of the possible behavior, traces in the sublogs may have more repetitive behavior and
easily cover all possible local behaviors. Therefore, location information may provide
valuable information guiding decomposed discovery. This speeds up analysis and, most
likely results in models better describing reality.

The idea to partition event logs is not new, see for example decomposition ap-
proaches [3, 4] and trace clustering approaches [16, 9, 27]. However, unlike existing
approaches we do not try to partition cases or activities through mining. Instead, we
propose to exploit location information explicitly attached to events. Such information
is often available or derivable.

The approach has been implemented in ProM and experiments using synthetic and
real-life event logs demonstrate the value of location information.

The remainder of the paper is organized as follows. Section 2 discusses related
work. Section 3 introduces preliminaries, including process models. Process mining,
in particular control-flow discovery, is introduced in Section 4. Localized event logs,
i.e., logs were events have one or more associated regions, are presented in Section 5.
Such logs may be used for decomposed process discovery, as shown in Section 6. The
experiments presented in Section 7 (using synthetic data and data from two real-life
software systems) show that localized event logs allow for significantly better models.
Section 8 concludes the paper.



2 Related Work

For an introduction to process mining, we refer to [1].
Process discovery, i.e., discovering a process model from a multiset of example

traces, is a very challenging problem and various discovery techniques have been pro-
posed [5, 6, 7, 8, 10, 11, 13, 15, 18, 19, 21, 25, 28, 29]. Many of these techniques use
Petri nets during the discovery process. It is impossible to provide a complete overview
of all techniques here. Very different approaches are used, e.g., heuristics [13, 28], in-
ductive logic programming [15], state-based regions [5, 11, 25], language-based regions
[8, 29], and genetic algorithms [21]. Classical synthesis techniques based on regions
[14] cannot be applied directly because the event log contains only example behav-
ior. For state-based regions one first needs to create an automaton as described in [5].
Moreover, when constructing the regions, one should avoid overfitting. Language-based
regions seem good candidates for discovering transition-bordered Petri nets for subnets
[8, 29]. Recently, a family of inductive mining approaches has been proposed by Lee-
mans et al. [18, 19]. These techniques can deal with incompleteness and infrequent
behavior, but still provide formal guarantees (e.g., perfect fitness and rediscoverability
for specific parameter settings). The approach presented in this paper can be used in
conjunction with all existing process discovery approaches.

Also related is the work on decomposed process mining. In [2] two types of log
decomposition are identified: vertical decomposition and horizontal decomposition.
In a vertical partitioning complete cases are assigned to a group and end-to-end pro-
cess models are discovered or checked. Traditional trace clustering techniques may be
viewed as vertical decomposition techniques (not for scalability but for obtaining sim-
pler models). Several authors have proposed such trace clustering techniques [16, 9, 27].
Here traces are grouped and simplified models are created per group. The approach
in this paper is based on a horizontal decomposition (traces are split into subtraces)
rather than a vertical decomposition. In a horizontal partitioning activities are assigned
to (possibly overlapping) groups [2, 3, 4]. Cases are projected on subsets of activities,
thus resulting in a sublog per group. A process fragment is discovered or checked per
subgroup. The principles presented in [3, 4] are used to prove the correctness of the
approach proposed in this paper.

Different divide and conquer approaches are possible [12, 3, 4]. For example, one
may decompose event logs and process models based on the refined process structure
tree identifying Single-Entry Single-Exit (SESE) fragments [24, 22]. This can only be
done for conformance checking. Here, explicit location information is exploited to de-
compose discovery into relatively independent parts.

3 Process Models

The results presented in this paper do not depend on a particular representation. How-
ever, we use labeled Petri nets with designated initial and final markings to illustrate
the approach. This section introduces the preliminaries needed in the remainder.
B(A) is the set of all multisets over some set A. For some multiset b ∈ B(A),

b(a) denotes the number of times element a ∈ A appears in b. b = [x3, y2, z] is a



multiset having 6 elements: three x elements (i.e., b(x) = 3), two y elements (i.e.,
b(y) = 2), and one z element (i.e., b(z) = 1). Operators are defined as usual, e.g.
[x2, y] ] [x, y, z] = [x3, y2, z] is the union of two multisets.

σ = 〈a1, a2, . . . , an〉 ∈ X∗ denotes a sequence over X of length n. 〈 〉 is the empty
sequence and σ1 · σ2 is the concatenation of two sequences. σ�Q is the projection of σ
on Q, e.g., 〈a, b, c, a, b, c〉�{a,c}= 〈a, c, a, c〉.

Definition 1 (Sequence Projection). Let X be a set and Q ⊆ X one of its subsets.
�Q∈ X∗ → Q∗ is a projection function and is defined recursively: (1) 〈 〉�Q= 〈 〉 and
(2) for σ ∈ X∗ and x ∈ X: (〈x〉 · σ)�Q= σ�Q if x 6∈ Q, and (〈x〉 · σ)�Q= 〈x〉 · σ�Q if
x ∈ Q.

Definition 2 (Applying Functions to Sequences). Let f ∈ X 6→ Y be a partial func-
tion.3 f may be applied to sequences of X using the following recursive definition (1)
f(〈 〉) = 〈 〉 and (2) for σ ∈ X∗ and x ∈ X:

f(〈x〉 · σ) =

{
f(σ) if x 6∈ dom(f)

〈f(x)〉 · f(σ) if x ∈ dom(f)

Figure 1 shows a labeled Petri net composed of places P = {p1, p2, . . . , p21} and
transitions T = {t1, t2, . . . , t18}. The flow relation F = {(p1, t1), (t1, p2), (t1, p8),
. . .} specifies the connections between places and transitions. A transition may have a
label, e.g., transition t1 has label a. The label refers to the activity associated with the
transition. Two transitions may have the same label, e.g., t13 and t15 correspond to
the same activity. Note that transition t4 has no label, i.e., it does not correspond to a
transition and is sometimes called “invisible”.

Definition 3 (Labeled Petri Net). A labeled Petri net is a tuple N = (P, T, F, l) defin-
ing a finite set of places P , a finite set of transitions T (such that P ∩ T = ∅), a flow
relation F ⊆ (P×T )∪(T×P ), and a labeling function l ∈ T 6→ UA where UA is some
universe of activity names. A marking of N is a multiset of places M , i.e., M ∈ B(P ).

A labeled Petri net N = (P, T, F, l) defines a directed graph with nodes P ∪ T
and edges F . A transition t ∈ dom(l) has a label l(t) that refers to some activity.
An invisible transition t ∈ T \ dom(l) has no label and does not correspond to some
observable activity. The state of a Petri net, called marking, is a multiset of places
indicating how many tokens each place contains. The initial marking shown in Figure 1
is [p1]. Another marking of this Petri net is [p3, p5, p15, p19].

A transition t ∈ T is enabled in marking M of net N , denoted as (N,M)[t〉, if
each of its input places •t contains at least one token. An enabled transition t may fire,
i.e., one token is removed from each of the input places •t and one token is produced
for each of the output places t• . Transition t1 in Figure 1 is enabled in the initial mark-
ing. Firing t1 results in [p2, p8, p16]. In marking [p3, p5, p15, p19] five transitions are
enabled: t3, t4, t5, t14, t17. Firing t4 results in marking [p4, p6, p15, p19].

3 A partial function f ∈ X 6→ Y has a domain dom(f) ⊆ X and a range rng(f) = {f(x) |
x ∈ dom(f)} ⊆ Y .



a f h

g

i

j p

p1 t1 p8 p11

p9

p13

t7

t8

t9

t10

p10

t11p12

p14

p15 t18

b

c

d

e

p2

p3

p5

t2

t3

t4

t5

p4

t6

p6

p7

k n

l

l

o

p16 p17t12

t13

t14

t15

t17p19 p20

m

p21

t16p18

r1 r2

r3

r4

r5

Fig. 1. Labeled Petri net with initial marking [p1] and final marking [p21]. The dashed lines refer
to regions and will be explained later.

(N,M)[t〉(N,M ′) denotes that t is enabled inM and firing t results in markingM ′.
Let σ = 〈t1, t2, . . . , tn〉 ∈ T ∗ be a sequence of transitions. (N,M)[σ〉(N,M ′) denotes
that there is a set of markings M0,M1, . . . ,Mn such that M0 = M , Mn = M ′, and
(N,Mi)[ti+1〉(N,Mi+1) for 0 ≤ i < n. A marking M ′ is reachable from M if there
exists a sequence σ such that (N,M)[σ〉(N,M ′).

In this paper we consider Petri nets with a designated initial and final markings. The
behavior considered are all complete firing sequences from the initial marking Minit to
the final marking Mfinal .

Definition 4 (System Net). A system net is a triplet SN = (N,Minit ,Mfinal) where
N = (P, T, F, l) is a labeled Petri net, Minit ∈ B(P ) is the initial marking, and
Mfinal ∈ B(P ) is the final marking. USN is the universe of system nets.

Given a system net SN , φ(SN ) is the set of all possible visible traces, i.e., com-
plete firing sequences starting in Minit and ending in Mfinal projected onto the set of
observable activities using function l.

Definition 5 (Visible Traces). Let SN = (N,Minit ,Mfinal) ∈ USN be a system net
with N = (P, T, F, l). φ(SN ) = {l(σ) | (N,Minit)[σ〉(N,Mfinal)} is the set of visi-
ble traces starting in Minit and ending in Mfinal .4

Given a universe of activities UA, UT = UA∗ is the universe of visible traces.
φ(SN ) ⊆ UT defines the set of visible traces that can be generated by SN . Note that
transitions may be invisible and that there may be multiple transitions having the same
label. However, φ(SN ) abstracts from such internals.

4 Note that l(σ) maps a firing sequence onto a trace of visible activities (see Definition 2).



In this paper, we use Petri nets to illustrate the approach. However, the results do
not depend on the modeling language selected. Therefore, we define the more neutral
notion of a process model. A system net SN defines a process model PM = φ(SN ) if
there is at least one firing sequence from the initial to the final marking.5

Definition 6 (Process Model). A process model PM is a non-empty set of visible
traces, i.e., PM ⊆ UT and PM 6= ∅. UPM is the universe of process models.

In the remainder we use the following shorthand to refer to the activities appearing
in a model: α(PM ) = {a | ∃σ∈PM a ∈ σ}.

4 Process Mining

Starting point for any process mining technique is an event log with partially ordered
events referring to cases and activities. To introduce events logs formally, we need to
introduce some notations. Next to the universe of activities UA, the universe of vis-
ible traces UT , and the universe of process models UPM , we assume four additional
universes:

– UE is the set of all possible event identifiers,
– UC is the set of all possible case identifiers,
– UAttr is the set of all possible attribute names, and
– UVal is the set of all possible attribute values.

Definition 7 (Event Log). L = (E,C, act , case, attr ,≺) is an event log if:
– E ⊆ UE is a set of events,
– C ⊆ UC is a set of cases,
– act ∈ E → UA maps events onto activities,
– case ∈ E → C maps events onto a set of cases,
– attr ∈ E → (UAttr 6→ UVal) maps each event onto a partial function assigning

values to some attributes, and
– ≺ ⊆ E × E defines a partial order on events.6

UL is the set of all possible event logs.

Any e ∈ E uniquely identifies an event. act(e) is the activity executed for case
case(e). There may be cases without events, but every event refers to precisely one
case. Event may have any number of attributes, e.g., attr(e)(timestamp) = 2015-
01-19T22:51:30.700+01:00 denotes the time event e occurred. Definition 7 assumes a
partial order on events. In literature often a total order is assumed within a case, i.e.,
a case corresponds to a sequence of events. However, sometimes one is not sure about
the ordering of events, e.g., multiple events have happened on the same day without

5 Note that the labeled Petri net may deadlock or livelock before reaching Mfinal . Such traces
are not considered because they cannot be related to cases in the event log. It is up to the
discovery approach to ensure some notion of soundness.

6 A partial order is a binary relation that is (1) irreflexive, i.e. x 6≺ x, (2) antisymmetric, i.e.
x ≺ y implies y 6≺ x, and (3) transitive, i.e. if x ≺ y and y ≺ z, then x ≺ z.



an explicit order. Moreover, we may know the actual causal dependencies based on
analyzing dataflow dependencies. In both cases, a partial order is more appropriate.

In the remainder we use the following shorthand to refer to the activities appearing
in an event log: α(L) = {act(e) | e ∈ E}.

Definition 8 (Process Discovery Technique). A process discovery technique disc ∈
UL → UPM maps event logs onto process models such that for any L ∈ UL: α(L) =
α(disc(L)).

A process discovery technique produces a process model for an event log. Here we
only require that the set of activities in the event log α(L) matches the set of activities
in the model α(disc(L)). As discussed in Section 2, many discovery techniques have
been proposed in literature. These may be viewed as specific instances of disc.

Process discovery is challenging because event logs are often far from complete
and there are at least four competing quality dimensions: (1) fitness, (2) simplicity,
(3) precision, and (4) generalization [1]. A model with good fitness allows for most
of the behavior seen in the event log. A model has a perfect fitness if all traces in
the log can be replayed by the model from beginning to end. The simplest model that
may explain the behavior seen in the log is the best model. This principle is known
as Occam’s Razor. Fitness and simplicity alone are not sufficient to judge the quality
of a discovered process model. For example, it is very easy to construct an extremely
simple Petri net that is able to replay all traces in an event log (but also any other event
log referring to the same set of activities).7 Similarly, it is undesirable to have a model
that only allows for the exact behavior seen in the event log. Remember that the log
contains only example behavior and that many traces that are possible may not have
been observed yet. A model is precise if it does not allow for “too much” behavior.
A model that is not precise is “underfitting”, i.e., the model allows for behaviors very
different from what was seen in the log. At the same time, the model should generalize
and not restrict behavior to just the examples seen in the log. A model that does not
generalize is “overfitting”. Overfitting means that an overly specific model is generated
whereas it is obvious that the log only holds example behavior (i.e., the model explains
the particular sample log, but there is a high probability that the model is unable to
explain the next batch of cases).

Here we do not quantify the four quality dimensions and restrict ourselves to simple
fitness notions such as perfect fitness and the fraction of perfectly fitting cases.

Definition 9 (Fitness). Let L = (E,C, act , case, attr ,≺) ∈ UL be an event log and
PM ∈ UPM a process model.

– A case c ∈ C is perfectly fitting PM (notation PM  c) if and only if there exists
a trace σ = 〈a1, a2, . . . , an〉 ∈ PM and a bijection f ∈ {1, 2, . . . n} → {e ∈ E |
case(e) = c} such that ai = act(f(i)) for 1 ≤ i ≤ n and f(j) 6≺ f(i) for any
1 ≤ i ≤ j ≤ n.8

7 System net SN = ((P, T, F, l),Minit ,Mfinal) with P = ∅, T = α(L), F = ∅, l the identity
function, Minit = [ ], and Mfinal = [ ] can replay any case in L.

8 A function f ∈ X → Y is bijective if there is a one-to-one correspondence between the
elements of X and Y , i.e., function f is total, surjective and injective.



– fit(L,PM ) = {c ∈ C | PM  c} is the set of perfectly fitting cases.
– nofit(L,PM ) = C \ fit(L,PM ) is the set of non-fitting cases,
– fitness(L,PM ) = |fit(L,PM )|

|C| is the fraction of traces in the event log perfectly
fitting the model, and

– L is perfectly fitting PM if nofit(L,PM ) = ∅.

Note that we use interleaving semantics for process models while events are par-
tially ordered (to capture uncertainty or causalities). Event log L is perfectly fitting
model PM if for any observed case c there is model trace that could explain the set
of events observed for c. When making a trade-off between fitness, simplicity, preci-
sion, and generalization, we may end up with a model not ensuring perfect fitness (e.g.,
deliberately leaving out exceptional behavior).

5 Localized Event Logs

As mentioned in the introduction, we assume localized event logs, i.e., each event e has
a non-empty set of regions loc(e). If event e occurs exclusively inside region r (i.e.,
no interaction between regions), then loc(e) = {r}. If event e describes some form of
interaction between two regions r1 and r2, then loc(e) = {r1, r2}. Any form of inter-
action (from communicating humans to function calls and service invocations) involves
multiple entities (e.g., components, services, or departments), here called regions.

Definition 10 (Localized Event Log). A localized event log LL = (L,R, loc) is com-
posed of an event log L = (E,C, act , case, attr ,≺) ∈ UL, a set of locations (called
regions) R, and a location function loc ∈ E → PNE (R).9

Given an event e, loc(e) defines the set of regions involved. As mentioned before, re-
gions can only interact through shared events.
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Fig. 2. Localized event log with 4 cases and 23 events.

Figure 2 visualizes a small event log with E = {e1, e2, . . . , e23} (23 events), C =
{c1, c2, c3, c4} (4 cases), and R = {r1, r2} (2 regions). Functions act and case are

9 PNE (X) = {Y ⊆ X | Y 6= ∅}, i.e., all non-empty subsets of X .



also depicted in Figure 2: act(e1) = a, case(e1) = c1, act(e2) = b, case(e2) = c1,
act(e8) = a, case(e8) = c2, etc. ≺ is only partially shown in Figure 2. Ordering
relations of events in different cases are not depicted and only the transitive reduction
of the ordering relations within a case is shown. Consider for example case c1. First
activity a is executed (event e1) followed by both b (event e2) and c (event e3), then f
(event e4) is executed followed by both g (event e5) and h (event e6). Case c1 concludes
with the execution of activity k (event e7). We abstract from attributes here (i.e., attr is
not shown), e.g., each event e may have an associated timestamp attr(e)(timestamp)
and resource attr(e)(resource). The location function loc is depicted using the shaded
rectangles: loc(e1) = {r1}, loc(e2) = {r1}, loc(e4) = {r1, r2}, loc(e5) = {r2},
loc(e20) = {r1, r2}, loc(e23) = {r2}, etc. Note that all f events belong to both
regions.

a
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f
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e

g

h

k

i

j

Fig. 3. Process model represented by a system net (the initial marking is shown; the final marking
only marks the sink place).

Classical discovery approaches consider all events to be potentially related. How-
ever, based on the regions involved we may conclude that events are unrelated thus
significantly simplifying process discovery. Consider again the localized event log of
Figure 2. Based on the four cases, one could conclude that d is always followed by i
and that j is always preceded by e. However, we have seen only four cases and the
next case may reveal new behavior. Process discovery should be able to deal with in-
completeness. For non-trivial processes, typically most traces are globally unique, i.e.,
there is no other case following exactly the same path from start to finish. If there are
many unique traces, one cannot assume global completeness. However, we may assume
events to be unrelated unless they are in the same region. Interaction between regions
is possible only through shared events. Using this assumption, we could discover the
process shown in Figure 3 using only the four cases of Figure 2. Without using such
an assumption, we may end up with the process model shown in Figure 4. This model
allows for the behavior exhibited by the four cases in Figure 2 and nothing more. In this
overfitting model, e may be followed by g and h, or e may be followed by j, but e may
not be followed by i. However, using the notion of regions in the localized event log,
we know that the choice made in region r1 is unrelated to the choice made in region r2.

To illustrate the value of localized events consider the system net shown in Figure 5
(the final marking just marks place end ). There are n concurrent parts each composed



a

b

c

f

d

e

g

h

k

i

j

Fig. 4. Overfitting process model not taking into account the regions. Due to incompleteness,
dependencies between {b, c, d, e} and {g, h, i, j} are derived that do not exist.

of k parallel activities. The model allows for:

pstall =
(n(k + 2))!

((k + 2)!)n
(k!)n

possible (sequential) traces.10 Note that we only consider sequential traces here. We
may also consider the number of “directly follows” relations:

df all = n+ n(k + 1)(k + (n− 1)(k + 2)) + n(1 + (n− 1)(k + 2))

where a directly follows relation is a pair of activities such that one activity is directly
followed in a sequential trace.11 The directly follows relation is interesting because it is
used by many process discovery algorithms to uncover causal relationships.

Let us now consider one of the concurrent parts (say ri with i ∈ {1, . . . , n}). The
submodel allows for pst i = k! possible (sequential) traces of length k + 4 (including
as , ais , aie and ae). The corresponding number of directly follows relations is df i =
k2 + k + 2.12

Table 1 shows the effects of parameters n and k (there are n concurrent parts each
composed of k parallel activities). If n = 10 and k = 10, then there are 4.17 × 10177

10 Each of the n concurrent parts allows for k! = k×(k−1)× . . .×1 sequential traces of length
k + 2 (abstracting from the fixed first activity as and the last activity ae which are invariable,
but including ais and aie)). These n traces of length k + 2 can be interleaved in (n(k+2))!

((k+2)!)n

ways and there are (k!)n unique collections of such n traces.
11 Activity as can be directly followed by n activities (a1s . . . ans). Each ais activity (with
i ∈ {1, . . . , n}) can be directly followed by k + (n − 1)(k + 2) activities. Each aij activity
(with i ∈ {1, . . . , n} and j ∈ {1, . . . , k}) can also be directly followed by k+(n−1)(k+2)
activities. Each aie activity (with i ∈ {1, . . . , n}) can be directly followed by 1+(n−1)(k+2)
activities. Activity ae is never followed by another activity.

12 Activity as can only be directly followed by ais in the submodel corresponding to ri. Activity
ais can be directly followed by k activities. Each aij activity (with j ∈ {1, . . . , k}) can be
followed by k activities (aie and aij ′ with j′ 6= j). Activity aie can only be directly followed
by ae .
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Fig. 5. A process composed of n+ 2 subprocesses marked rs, r1, r2, . . . , rn, re. Each of the n
subprocesses in the middle has k parallel activities. For larger values of n and k this process is
difficult to discover due to the many possible interleavings.

unique traces. Clearly, it is highly unlikely (understatement) to see all of these possibil-
ities. Per concurrent part, there are 3628800 unique traces, still a lot but nevertheless a
spectacular reduction (factor 1.15 × 10171). Process discovery algorithms do not rely
on seeing all possible traces to avoid overfitting. For example, if there are loops there
may be infinitely many possible behaviors (see for example the lower part of Figure 1).
Therefore, many discovery algorithms use notions such as the directly follows relation.
If n = 10 and k = 10, then the directly follows relation has 14080 elements. This
reduces to 1120 if it suffices to see only the local directly follows relationships, i.e.,
less than 8 percent of the overall direct successions need to be observed to discover the
“correct” model!

Figure 5 is a rather extreme example. However, it nicely shows that the same model
can be discovered using smaller, less complete event logs by exploiting localization



Table 1. Effects of n and k values in Figure 5 on the number of traces or direct successions that
need to be observed for complete coverage.

parameters n 1 1 5 5 1 10 10
k 1 5 1 5 10 1 10

overall process number of unique traces 1 120 1.68E+8 7.91E+31 3628800 4.39E+24 4.17E+177
number of directly follows
relationships

4 32 200 1140 112 850 14080

single frag-
ment

number of unique traces 1 120 1 120 3628800 1 3628800

number of directly follows
relationships

4 32 4 32 112 4 112

combined frag-
ments

minimal number of global
traces needed to cover all lo-
cally unique traces

1 120 1 120 3628800 1 3628800

total number of local di-
rectly follows relationships

4 32 20 160 112 40 1120

information in event logs. Compare this to statistics where assumptions about indepen-
dence are used in predictions or when computing confidence intervals.

Definition 10 allows for two events that refer to the same activity but different re-
gions. For process discovery, we would like to relate activities to a fixed number of
regions. Hence, we aim at event logs that are stable.

Definition 11 (Stable). A localized event log LL = (L,R, loc) with L = (E,C, act ,
case, attr ,≺) is stable if for all e1, e2 ∈ E with act(e1) = act(e2): loc(e1) = loc(e2).

The localized event log of Figure 2 is stable, e.g., f events always refer to r1 and
r2. A localized event log that is not stable can be “stabilized” by refining function
act ∈ E → UA. For example, function act can be replaced by act ′ where act ′(e) =
(act(e), loc(e)) for e ∈ E. The new function distinguishes activities having distinct
sets of regions involved.

6 Decomposed Process Discovery

A localized event log can be transformed into a collection of sublogs, i.e., one event log
per region. The sublogs are used to discover submodels. Finally, the submodels can be
merged into a single overall process model. To create sublogs, we define a projection
operator.

Definition 12 (Projection). Let L = (E,C, act , case, attr ,≺) be an event log and
X ⊆ E a subset of events. L�X= (X,C, act �X , case �X , attr �X ,≺′) with ≺′ = (≺
∩(X ×X)).13

Definition 13 (Decomposed Discovery). LetLL = (L,R, loc) be a localized event log
with L = (E,C, act , case, attr ,≺) and A = α(L), and let disc ∈ UL → UPM be a
process discovery technique. For any region r ∈ R, we define the following shorthands:

– Er = {e ∈ E | r ∈ loc(e)} are the events of region r,
– Lr = L�Er

is the sublog of region r,

13 f�X is function f with the domain restricted to X , i.e., dom(f�X) = X ∩ dom(f).



– Ar = {act(e) | e ∈ Er} are the activities of region r, and
– PM r = disc(Lr) is the process model discovered for region r.

PMR = {σ ∈ A∗ | ∀r∈R σ�Ar∈ PM r} is the overall process model constructed by
merging the individual models.

Note that the smaller process models are merged by weaving the region-based sub-
sequences.
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Fig. 6. Two projected event logs based on the overall event
log of Figure 2: one sublog for each region.

Figure 6 illustrates how
event logs can be projected onto
the different regions. Now a
model can be discovered for
each region and the models can
be merged as defined next.

PMR merges the subpro-
cesses discovered for the |R|
sublogs. Activity sequence σ is
a visible trace of PMR if and
only if σ �Ar∈ PM r (i.e., the
projected sequence is a visible
trace of the corresponding sub-
model) for each region r ∈ R.
Like the rest of the paper, Def-
inition 13 is not Petri net spe-
cific. However, the merging of
the submodels into one overall
model corresponds to the fol-

lowing union operator for system nets.

Definition 14 (Union of Nets). Let SN 1 = (N1,M1
init ,M

1
final) ∈ USN with N1 =

(P 1, T 1, F 1, l1) and SN 2 = (N2,M2
init ,M

2
final) ∈ USN with N2 = (P 2, T 2, F 2, l2)

be two system nets with P 1 ∩ P 2 = ∅.
– P 3 = P 1 ∪ P 2 is the resulting set of places,
– AS = rng(l1) ∩ rng(l2) is the set of shared activities (appearing in both regions),
– T 1

S = {t ∈ dom(l1) | l1(t) ∈ AS} and T 2
S = {t ∈ dom(l2) | l2(t) ∈ AS} are the

transitions corresponding to shared activities,
– T 3 = {(t1, t2) ∈ T 1

S × T 2
S | l1(t1) = l2(t2)} ∪ {(t1,�) | t1 ∈ T 1 \ T 1

S} ∪ {(�
, t2) | t2 ∈ T 2 \ T 2

S} is the resulting set of transitions,14

– dom(l3) = {(t1, t2) ∈ T 3 | t1 ∈ dom(l1) ∨ t2 ∈ dom(l2)}, l3((t1, t2)) = l1(t1)
if t1 ∈ dom(l1) and l3((t1, t2)) = l2(t2) if t2 ∈ dom(l2),

– F 3 = {(p, (t1, x)) ∈ P 1×T 3 | (p, t1) ∈ F 1}∪{((t1, x), p) ∈ T 3×P 1 | (t1, p) ∈
F 1}∪{(p, (x, t2)) ∈ P 2×T 3 | (p, t2) ∈ F 2}∪{((x, t2), p) ∈ T 3×P 2 | (t2, p) ∈
F 2},

– N1 ∪N2 = (P 3, T 3, F 3, l3) is the union of N1 and N2, and

14 Next to synchronizing transitions of the form (t1, t2), there are transitions of the form (t1,�)
or (�, t2) that do no synchronize as these are local to one of the nets.



– SN 1 ∪ SN 2 = (N1 ∪N2,M1
init ]M2

init ,M
1
final ]M2

final) is the union of system
nets SN 1 and SN 2.

The above definition takes the union of two system nets, but this can be extended
to any number of system nets. The following lemma shows that such union based on
merging transitions indeed implements the composition used in Definition 13.

Lemma 1. Let SN 1,SN 2, . . . ,SN n be n system nets with non-overlapping sets of
places. φ(

⋃
1≤i≤n SN i) = {σ ∈ A∗ | ∀1≤i≤n σ �rng(li)∈ φ(SN i)} with A =⋃

1≤i≤n rng(li) as the set of activities.

Proof. Assume n = 2, SN 1 ∪ SN 2 = (N1 ∪ N2,M1
init ]M2

init ,M
1
final ]M2

final),
N1 = (P 1, T 1, F 1, l1), N2 = (P 2, T 2, F 2, l2), and N1 ∪N2 = (P 3, T 3, F 3, l3). The
proof can be generalized for any number of system nets n ≥ 1.

Let σ ∈ φ(SN 1 ∪ SN 2), we need to show that σ�rng(l1)∈ φ(SN 1) and σ�rng(l2)∈
φ(SN 2). SN 1 can be seen as a projection of SN 1∪SN 2, i.e., places in P 2 are removed,
places in P 1 are kept, transitions of the type (�, t2) are removed, and transitions of the
type (t1, t2) or (t1,�) renamed to t1. The firing sequence corresponding to σ in SN 1∪
SN 2 corresponds to a firing sequence in SN 1 after renaming and removing transitions
of the type (�, t2) from the sequence. This firing sequence is indeed possible because
removing places from P 2 can never lead to blocking transitions. Hence, σ �rng(l1)∈
φ(SN 1). Similarly: σ�rng(l2)∈ φ(SN 2).

Let σ ∈ A∗ be such that σ �rng(l1)∈ φ(SN 1) and σ �rng(l2)∈ φ(SN 2), we need
to show that σ ∈ φ(SN 1 ∪ SN 2). σ �rng(l1)∈ φ(SN 1) defines a full firing sequence
σ1 ∈ (T 1)∗ with l1(σ1) = σ�rng(l1), i.e., a sequence of transitions starting in M1

init

and ending in M1
final . Similarly, σ�rng(l2)∈ φ(SN 2) defines a full firing sequence σ2 ∈

(T 2)∗ with l2(σ2) = σ�rng(l2). Note that l1(σ1)�AS
= l2(σ2)�AS

= σ�AS
.

There exists a σ3 ∈ (T 3)∗ such that l3(σ3) = σ, f1(σ3) = σ1 and f2(σ3) = σ2 with
dom(f1) = {(t1, t2) ∈ T 3 | t1 6=�}, f1(t1, t2) = t1, and dom(f2) = {(t1, t2) ∈ T 3 |
t2 6=�}, f2(t1, t2) = t2. Such a sequence exists because in σ both system nets agree on
shared activitiesAS and for any t1 and t2 with l1(t1) = l2(t2) ∈ AS : (t1, t2) ∈ T 3 (i.e.,
all combinations have been included). Now, it is easy to see that σ3 is indeed a firing
sequence possible in SN 1∪SN 2: it starts inM1

init ]M2
init and ends inM1

final ]M2
final .

Since l3(σ3) = σ, σ ∈ φ(SN 1 ∪ SN 2). ut

The lemma is related to classical results on net composition [20]. Also see [3, 4] for
other properties preserved by the union of two system nets in relation to an event log.

Theorem 1 (Decomposed Discovery). Let LL = (L,R, loc) be a stable localized
event log and let disc ∈ UL → UPM be a process discovery technique. Let PMR,
PM r, and Lr be as defined in Definition 13.

– fit(L,PMR) ⊆
⋂
r∈R fit(Lr,PM r),

– fitness(L,PMR) ≤
|
⋂

r∈R fit(Lr,PM r)|
|C| ,

– fit(L,PMR) =
⋂
r∈R fit(Lr,PM r) if ≺ defines a strict total order,15

15 A strict order is a partial order that is also trichotomous (exactly one of x ≺ y, y ≺ x or x = y
holds).



– fitness(L,PMR) =
|
⋂

r∈R fit(Lr,PM r)|
|C| if ≺ defines a strict total order.

Proof. The second and fourth statement follow directly from the first and third state-
ment respectively. To prove the first statement we need to show that for any c ∈
fit(L,PMR) and r ∈ R: c ∈ fit(Lr,PM r). Because PM  c there is a trace σR =
〈a1, a2, . . . , an〉 ∈ PMR and a bijection f ∈ {1, 2, . . . n} → {e ∈ E | case(e) = c}
such that ai = act(f(i)) for 1 ≤ i ≤ n and f(j) 6≺ f(i) for any 1 ≤ i ≤ j ≤ n. Let
σr = σR�Ar

. Clearly, σr ∈ PM r due to the construction of PMR (see Definition 13).
c is not just an case in L but also a case in Lr (see Definition 12). Due to stability, the
set of c events projected away matches the elements projected away in σr = σR�Ar .
Hence, a smaller bijection can be created relating σr to the Ar events in c. Therefore,
c ∈ fit(Lr,PM r).

The reverse does not necessarily hold if ≺ is just a partial order and not a total
order. The partial order could be linearized differently in the region-based submodels.
To prove the third statement we additionally need to show that for any c ∈ L such that
c ∈ fit(Lr,PM r) for all r ∈ R: c ∈ fit(L,PMR). Since ≺ is now a strict total order,
there is one σ = 〈a1, a2, . . . , an〉 describing the sequence of activities (not events) in
case c. Let σr = σ�Ar

. For all r ∈ R: σr ∈ PM r because c ∈ fit(Lr,PM r) and LL
is stable. Since PMR = {σ ∈ A∗ | ∀r∈R σ�Ar

∈ PM r}, we conclude that σ ∈ PMR

and c ∈ fit(L,PMR). ut
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Fig. 7. Five discovered system nets: one for each region. The initial markings are indicated. The
final markings are the states with all sink places marked with one token (not indicated explicitly).

Figure 7 shows the basic idea. Suppose that we take an event log created by simu-
lating Figure 1 such that the event log is locally complete with respect to the directly
follows relation. Now project the overall event log onto the five regions and discover
a process model per region. In this case, discovery techniques may discover the five
system nets shown in Figure 7. It is easy to see that these submodels indeed describe



the corresponding sublogs well. The five system nets in Figure 7 may be merged using
Definition 14. In this case we do not get Figure 7 immediately. However, after removing
some of the redundant places (i.e., hanging places whose removal does not change the
behavior), we get the original system net (modulo renaming of places).

The composition of an overall model from submodels used in Definition 13 (and
the specific Petri-net realization in Definition 14), assumes synchronous communica-
tion. Asynchronous communication can be supported by introducing special “channel
regions”, these are regions with a send and receive activity. This corresponds to the sys-
tem net SN a = (({pbuffer}, {tsend , treceive}, {(tsend , pbuffer ), (pbuffer , treceive)}, l),
[ ], [ ]) with l(tsend) = asend and l(treceive) = areceive . The corresponding process
PM a = φ(SN a) is a simple buffer and may be viewed as a region. Hence, results like
the property expressed in Theorem 1 can also be applied in the asynchronous setting.

7 Experimental Results

The decomposition discovery approach was implemented as a plugin for ProM (www.
processmining.org) – an open source framework aimed to develop and test pro-
cess mining algorithms. The plugin takes a localized event log as input (in localized
event logs regions are specified as additional event attributes) and produces a system
net as a result. This plugin was added to the package called LocalizedLogs available in
the Nightly Build of ProM. The DivideAndConquer package [26] is used to handle the
sublogs and to merge the resulting models.

7.1 Synthetic Event Data

Consider the reference model of a booking process depicted in Figure 8. Figure 9 shows
an event log, generated by this model. This event log is not complete with respect to
the directly follows relation, e.g., in the small event log the select hotel activity never
directly followed the register activity.

register cancel
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flight
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select 

hotel

p3 t3
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book 

flight

pay

book 

hotel

t4
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t7 p8

Fig. 8. A system net of a booking process with the initial and final markings [p1] and [p8] respec-
tively.

All the known discovery methods, including those that deal with incomplete logs,
will not rediscover the initial model, because they cannot exploit localization informa-
tion and demand some form of global completeness. The inductive mining approach [19],
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Fig. 9. A localized event log generated by the system net presented in Figure 8. There are two
regions: one concerned with flights (r1 ) and one concerned with hotels (r2 ).

which is able to mine models from incomplete event logs, will discover the process
model presented in Figure 10. The model is overfitting the event log with respect to the
accidental ordering of two selection activities. Moreover, two loops are created. How-
ever, if we apply the approach proposed in this paper, we discover the initial system
net (Figure 8) using the same discovery technique (after removing redundant hanging
places, as described). This is possible because the event log in Figure 9 is complete per
region.

register
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flight

select 

hotel

pay

book 

hotel

book

flight

 

Fig. 10. The process model discovered by the inductive miner without exploiting localization
information. Note that causalities between unrelated parts are inferred due to the incomplete
event log.

7.2 Real-Life Event Data from Software

Using the approach proposed we have analyzed event logs of two real-life software
systems: a booking flight system and a banking system.

The user of a booking flight system fills three different web forms to insert personal,
insurance and payment information. The user may complete the web forms in any or-
der. Thus, due to the event log complexity and incompleteness the direct application of
the well-known discovery algorithms quickly results incomprehensible process models
that contain misleading cycles and non-existing dependencies between activities. The



overall event log was enriched with three regions corresponding to the web forms, i.e.,
an attribute was added for this purpose. These regions naturally follow from the system
design. Hence, it was easy to produce a localized event log. Shared activity labels cor-
respond to common window operations, such as load and unload, and data verification.
By applying the approach presented in this paper, we could obtain the model depicted
in Figure 11.

Fig. 11. A model of a booking flight system. Shared activities are highlighted in white, although
it is not explicitly shown, they belong to all the regions.

The inductive mining approach was utilized as an underlying algorithm. The model
obtained by directly applying the inductive miner contains 1809 connections between
transitions, because of a global cycle, connecting almost all the transitions with each
other, while the model constructed using regions contains only 177 connections.16 Re-
lations derived between different regions other than through overlapping activities are
artifacts of the incompleteness of the event log.

The other software system under consideration is a banking system. This banking
system handles requests and provides the user with the information about customer
services. The banking system has a hierarchical structure and is represented by differ-
ent program layers. Namely, it includes facade, services, data and common data access
layers. Each request is received on the facade layer and then redirected to the next
layer of the hierarchy. To treat layers as regions the event log was enriched with addi-
tional events, denoting request/response communications between layers and belong-
ing to both communicating regions. The localized event log can be used to create the
model. Again, the resulting model is simpler and our approach succeeds in handling in-
completeness better than traditional approaches: the model contains 1986 connections
between transitions instead of 19115, presented in the model obtained by applying the
inductive miner directly on the event log. This multilayer model was represented as
a model of interacting processes (or layers). A plugin for ProM, which constructs a
BPMN [23] model of interacting processes from a set of system nets and a correspond-

16 A pair (t1, t2) is a “connection” between visible transitions t1 and t2 (i.e., t1, t2 ∈ dom(l)) if
and only if there exists a non-trivial path from t1 to t2, which does not go through other visible
transitions.



ing event log, was developed as well. This plugin is based on the BPMN-supporting
plugins, described in [17]. It converts each system net to a BPMN process within a
pool, each request or response activity is converted to a message event, and each pair
of corresponding message events is connected by a message flow. Note that for this
plugin each shared event should have an additional attribute to determine its type (send
or receive event). The automatically generated BPMN model of the multilayer banking
system is presented in Figure 12.

Fig. 12. A BPMN model discovered for a multi-
layer banking system.

Thus, the decomposition discovery
approach allows not only to improve the
quality of the models discovered, but also
assists in creating hierarchical models
exploiting higher-level process notations
like BPMN.

For models constructed from the real-
life event logs using various discovery
approaches: heuristic [13, 28], inductive
[18, 19], and ILP (language-based re-
gions) [8, 29] miners, quality metrics,
such as fitness, precision and general-
ization were obtained. Table 2 contains
quality characteristics17 of process mod-
els constructed directly from the event
log, using the discovery approach spec-
ified, and the characteristics of corre-
sponding process models constructed us-
ing localization information. Table 2

shows that the models constructed from the localized logs allow for more traces to
fit and are more general, while the models constructed directly from the event logs tend
to be more precise, but less fitting.

Table 2. Quality of process models discovered from the real-life event logs

Event logs Discovery algorithms Fitness Trace fitness Precision Generalization
Booking system Heuristic miner 0.00 / 0.13 0.64 / 0.75 0.55 / 0.32 0.89 / 0.90

Inductive miner 0.23 / 1.00 0.85/ 1.00 0.22 / 0.16 0.98 / 1.00
ILP miner 1.00 / 1.00 1.00/ 1.00 0.36 / 0.25 1.00 / 1.00

Banking system17 Inductive miner 0.25 / 1.00 0.84 / 1.00 0.14/ 0.06 0.97 / 1.00
ILP miner 0.54 / 1.00 0.64 / 1.00 0.44 / 0.16 0.68 / 1.00

17 Fitness is the fraction of perfectly fitting cases. Trace fitness is the measure of discrepancy
between a log and a model. Precision is the fraction of additional cases, obtained during replay,
which are not represented in the log. Generalization is the fraction of states visited during
replay, which are covered by the model.

17 Characteristics for the models constructed by the heuristic miner cannot be obtained in a rea-
sonable amount of time.



8 Conclusion

In this paper we presented a novel process discovery approach exploiting localization
information, i.e., events refer to one or more regions. Such information is available
in most application domains. In this paper, we illustrated this using event data from
software systems. Such systems have an explicit architecture and events may be related
to this architecture. Hence, it is easy to create localized event logs. Experiments show
that such reasonably chosen information can be used to produce much better process
models. Whereas conventional approaches require some global form of completeness,
our approach only needs local completeness (within a region). Therefore, the resulting
models are simpler, more general and allow more cases to fit. Moreover, localization
information may be exploited to create hierarchical models.
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