
Conformance Checking Based on Partially Ordered
Event Data

X. Lu, D. Fahland, W.M.P. van der Aalst

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
(x.lu,d.fahland,w.m.p.v.d.aalst)@tue.nl

Abstract. Conformance checking is becoming more important for the analysis
of business processes. While the diagnosed results of conformance checking tech-
niques are used in diverse context such as enabling auditing and performance
analysis, the quality and reliability of the conformance checking techniques them-
selves have not been analyzed rigorously. As the existing conformance checking
techniques heavily rely on the total ordering of events, their diagnostics are un-
reliable and often even misleading when the timestamps of events are coarse or
incorrect. This paper presents an approach to incorporate flexibility, uncertainty,
concurrency and explicit orderings between events in the input as well as in the
output of conformance checking using partially ordered traces and partially or-
dered alignments, respectively. The paper also illustrates various ways to acquire
partially ordered traces from existing logs. In addition, a quantitative-based qual-
ity metric is introduced to objectively compare the results of conformance check-
ing. The approach is implemented in ProM plugins and has been evaluated using
artificial logs.

1 Introduction

Models are increasingly used to describe business processes, to automate process exe-
cutions, to communicate with stakeholders, and to evaluate designs. However, process
mining research shows that process executions in reality often deviate from documented
process models, potentially violating security and compliance policies. As models en-
able various analysis techniques ranging from verification to simulation, it is essential
to provide diagnostic information about the conformance of process models with re-
spects to event logs recording the real behavior [1]. This information can be further
used to identify and measure deviations, enable auditing and compliance analysis [2,
3]. Moreover, the relationships between models and logs obtained from aligning them
can be used to analyze performance and repair process models [4, 5].

Dozens of approaches [1, 4, 6, 7, 2] have been proposed to check conformance be-
tween a given model and a sequence of events (a so-called trace) from an event log, but
all of these approaches assume that the events in a trace are totally ordered (e.g. based
on precise timestamps). The state-of-the-art technique in conformance checking is the
alignment approach proposed in [6, 7], which relates behavior observed in a sequential

trace (i.e. events) to behavior documented in a model (i.e. activities) and identifies de-
viations between them. Alignments with the least number of deviations are considered
to be optimal.

One of the limitations of computing optimal alignments for sequential traces is that
current approaches heavily rely on the total ordering of events in a trace. In cases where
the timestamps are too coarse (e.g. only the dates are recorded and the order of the
events on the same day is unknown) or incorrect (e.g. due to manual recording), using
a non-trustworthy total ordering of these events for computing alignment may result in
classifying abnormal behavior as conforming and normal behavior as deviating. More-
over, sequential traces are unable to describe concurrent events (e.g. events happening
at the same time or events of which we known that there is no causal dependency be-
tween then). Furthermore, the dependencies between events in the resulting alignments
may be misleading because of ordering problems.

To overcome these limitations, we propose to use partially ordered events rather
than totally ordered events. This way we can express causal dependencies, uncertainty,
and concurrency in a better way. Moreover, we also argue that computing partially
ordered alignments based on partial orders provides more precise diagnostic results for
conformance checking.

In this paper, we introduce partially ordered traces and use these as input to com-
pute partially ordered alignments with respect to a given model. An overview of our
approach is shown in Figure 1. We discuss our approach in two parts:

1) Given a partially ordered trace and a process model, we show how to compute a
partially ordered alignment.

2) Given a log, we show how to obtain partially ordered traces which are used as input
for the first part.

v3

Compute Model

Partially ordered
traces

Partially ordered
alignments

Sequential
Log

Partially
ordered Log

Without
data

With data

Type A

Type B

Type D

Type C

Part 1 (Section 3) Part 2 (Section 4)

4

Fig. 1: An overview of our approach.

In the first part, we
discuss a generic approach
which extends the sequen-
tial alignment approach [7]
to computing optimal par-
tially ordered alignments.
In addition, we also in-
troduce a quantitative-based
alignment quality metric to
measure and to compare the quality of alignments and to evaluate our approach.

In the second part, we discuss ways to derive the input of the first part, i.e. partially
ordered traces, from a given log. More specifically, we categorize input logs into four
types: sequential logs without data (Type A), sequential logs with data (Type B), par-
tially ordered logs with data (Type C) and partially ordered logs without data (Type D).
For each type, we discuss an example of computing partially ordered traces. In addition,
we will demonstrate shortcomings of totally ordered alignments that can be overcome
by partially ordered alignments.

The remainder of this paper is structured as follows. We first introduce some ba-
sic concepts in Section 2. Section 3 defines partially ordered traces and alignments,
describes our approach based on computing partially ordered alignments, and intro-

duces a novel alignment quality metric. Section 4 discusses ways to acquire partially
ordered traces from classical sequential traces and shows examples where partially or-
dered alignments perform better than existing conformance checking approaches. Sec-
tion 5 presents results of experiments we conducted. Section 6 discusses the related
work, and Section 7 concludes the paper.

2 Preliminaries

In this section, we first introduce a running example and use the running example to
recall some preliminaries related to event logs and alignments.

Running example. Figure 2 shows a simplified process in a hospital. The process starts
with a patient having an appointment (A). Next, a doctor can check the patient history
(C) while the patient is scheduled for radiology (R) and followed by a lab test (L).
The doctor evaluates (E) the result of these tests and determines whether to operate
(O) or to send patient home for home treatment (H). Operated patients require nursing
(N). Finally, the patient might be re-evaluated (V) to determine whether she has to be
operated on again.

Case, Events, Traces, Logs. A case is a process instance, i.e. an execution of a process.
An activity is a well-defined task in a process model (e.g. blue rectangles in Figure 2).
Executing an activity for a case results in an event recorded in the trace of this case.
Each event includes a set of data attributes describing the event. In the classical setting
of process mining, a trace is thus a totally ordered sequence of events of a case. We use
s-trace to denote such a sequential trace. A log is a collection of traces that belong to
the same process model. In the running example, a case is a patient going through this
process. Figure 3(a) shows a s-trace consisting of seven events, each of which has four
data attributes: the case id, the event id, the activity name and the timestamp.

Alignments. A sequential alignment (abbreviated to s-alignments) between a trace and
a process model is defined as a sequence of moves, each of which relates an event in the
trace to an activity in the model. A “good” move is a so-called synchronous move, which
is an event observed in the trace and allowed according to the documented behavior (i.e.
an activity to which the event can be related). Deviations are indicated by so-called log
moves and model moves: a log move is an observed event not allowed by the modeled

P0

C

R

E

N

H

V P2

P1

P5

P3

P6

P7

P11 A

L P4 O

Appointment

Radiology Lab Test

Check History

Evaluate

Operate Nursing

Home Treatment

Validate patient

patient
check

patient
radiograph

patient
labtest

patient
radiograph
labtest
check
evaluation

patient
evaluation
operation

patient
operation
validation

patient
evaluation
validation

patient
validation
evaluation

Data attributes
italic = input
underlined = output

16

P0 place

transition

Fig. 2: An example of a simplified process in a hospital.

(a) s-trace

(b) s-alignment

Fig. 3: An s-trace and
its s-alignment.

behavior; a model move is an event that should have been observed according to the
modeled behavior but missed in the trace. A cost function assigns to each possible move
a cost. An s-alignment with lowest cost according to the cost function is an optimal s-
alignment. For the technical details, we refer to [7]. In the rest of this paper, we use the
standard cost function which assigns to each log move and model move the same cost
of 1 and to each synchronous move a cost of 0. For example, the optimal s-alignment
shown in Figure 3(b) between the s-trace in Figure 3(a) and the model in Figure 2
consists of four synchronous moves, two log moves L

>>
and D

>>
and one model move >>

L
.

Partial orders. A partial order over a set V is a binary relation which is irreflexive,
antisymmetric, and transitive. A directed acyclic graph (DAG) G = (V,→) defines a
partial order ≺ over V , i.e. for all v1, v2 ∈ V , if there is a path from v1 to v2, then v1 ≺
v2. The transitive reduction of a DAG and its corresponding partial order is unique [8].

3 Partially Ordered Alignment

In this section, we define the notion of partially ordered traces and alignments. More-
over, we describe our approach to compute an optimal partially ordered alignment if a
partially ordered trace is given. In addition, we also define an alignment quality metric
to compare two partially ordered alignments.

Definitions. Given a case with its set of events, a partially ordered trace (p-trace) is
a directed acyclic graph (which defines a partial order) over the set of events. Each
dependency (dep.) in p-trace from an event ei to another event ej indicates that event ei

has led to the execution of ej. For example, the p-trace shown in Figure 4 has the same
events as the case of Figure 3(a). The partial order in Figure 4 shows that events R, L,
H and D directly depend on event A, while R, L, H and D are concurrent to each other
(i.e. in no particular order).

Correspondingly, a partially ordered alignment (p-alignment) between a p-trace and
a process model is a directed acyclic graph (which defines a partial order) over the set
of moves between them. A move comprises an event in the p-trace and an activity in
the model to which the event is related, similar to moves in s-alignments. There are
three types of moves: synchronous moves, log moves and model moves. The ordering
of moves (i.e. dependencies between the moves) in a p-alignment respects the order-
ing of their events in the p-trace or the ordering of their activities in the model. For
instance, Figure 5 exemplifies a p-alignment between the p-trace shown in Figure 4 and
the model shown in Figure 2. The p-alignment shown in Figure 5 has five synchronous
moves (denoted by green five-sided polygons, e.g. A), two log moves (denoted by yel-
low triangles, e.g. D) and one model move (denoted by blue rectangle, e.g. E).

Dependencies between moves originate either from dependencies between log events
(yellow), between moves (blue), or from both (green), see Figure 5. A dependency be-
tween two moves is a direct dependency (d-dependency or d-dep.) if and only if there
is no other path between the two moves. The minimal p-alignment of a p-alignment is
the transitive reduction of the p-alignment and only consists of d-dependencies.

An optimal p-alignment is a p-alignment with lowest cost according to the cost
function. We also introduce the notion of the ideal p-alignment γ∗ of a case, which is

the only true p-alignment of the case, i.e. both the diagnosed moves and dependencies
of γ∗ are correct. The p-alignment shown in Figure 5 is for example assumed to be the
ideal p-alignment for the case shown in Figure 3(a).

Event
(D-)Dependency

Fig. 4: A p-trace for
the case in Figure 3.

Sync. Move
Log Move

Model Move
D-dep. Dep.

Fig. 5: An optimal p-
alignment for the p-trace in
Figure 4.

DL

19

EL

HL

P0 EM

NM

HM

VM P2

P1

P5

P3

P6

P7

P11

AS ES HS

P4 OM

RS LS CS

Q0

Q2

Q4

Q3

Q6

Q8

Q7

Q5 Q9

Q13

CM

RM

AM

LM

AL

CL

LL

RL

EL P0
EM

P2

P1

P5

P3

P6

P11

AS

HS

P4 RS

LS

CS

Q0 Q2

Q4

Q3

Q6

Q8

Q7

Q9

Q13

𝛽0

𝛽1

𝛽3

𝛽4

𝛽5

𝛽6

𝛽7

𝛽8

Event net
and
log moves

Process model
and
model moves

Synchronous
moves

Q1

Q1

Q5

DL
𝛽2

Fig. 6: A product net between the p-trace in Figure 4
and the process model in Figure 2.

DL

19

EL

HL

P0 EM

NM

HM

VM P2

P1

P5

P3

P6

P7

P11

AS ES HS

P4 OM

RS LS CS

Q0

Q2

Q4

Q3

Q6

Q8

Q7

Q5 Q9

Q13

CM

RM

AM

LM

AL

CL

LL

RL

EL P0
EM

P2

P1

P5

P3

P6

P11

AS

HS

P4 RS

LS

CS

Q0 Q2

Q4

Q3

Q6

Q8

Q7

Q9

Q13

𝛽0

𝛽1

𝛽3

𝛽4

𝛽5

𝛽6

𝛽7

𝛽8

Event net
and
log moves

Process model
and
model moves

Synchronous
moves

Q1

Q1

Q5

DL
𝛽2

Fig. 7: The partially ordered alignment net of the p-
alignment in Figure 5.

Approach. Our method extends
the approach of [7] to compute
an optimal p-alignment between
a given p-trace and a model.
We first convert the p-trace into
a so-called event net, which is
a Petri net that represents the
behavior of the given p-trace.
More precisely, each event in
the p-trace is represented by a
transition in the event net, and
each dependency found between
two events is converted into a
place between their correspond-
ing transitions in the event net.
To complete the event net, for
each event that has no predeces-
sor or no successor, we add an
input place or an output place,
respectively.

After computing the event
net, we join the event net with
the process model to obtain a
product net which consist three
types of transition representing
the three types of move (i.e.
log moves, model moves, and
synchronous moves). For further
detail, we refer to [7]. Figure 6
exemplifies the product net be-
tween the p-trace shown in Fig-
ure 4 and the process shown in
Figure 2.

Next, we compute a firing sequence with a lowest cost (according to the standard
cost function) from the initial marking to the final marking using the A∗-approach pro-
posed in [7]. Then, we replay the firing sequence on the product net. We only retain the
places visited, the transitions fired and the arcs between them. We call the retained net
an optimal alignment net. For example, Figure 7 shows an optimal alignment net of the
product net in Figure 6. Finally, we convert an optimal alignment net into an optimal
p-alignment by replacing the places between transitions with dependencies. Figure 5
shows the optimal p-alignment converted from the optimal alignment net shown in Fig-
ure 7.

Table 1: Compare s-alignments and p-alignments using quality metrics.

Sync. Move Log Move Model Move d-dependencies

TP FP FN TP FP FN TP FP FN TP FP FN

Ideal 5 0 0 2 0 0 1 0 0 8 0 0
Seq. 4 1 1 1 1 1 0 1 1 2 5 6
Type A 5 1 0 1 0 1 0 0 1 5 1 3
Type B 5 1 0 1 0 1 0 0 1 7 0 1

Alignment Quality Metrics. To compare two p-alignments, we define the true pos-
itives, false positives, and false negatives for synchronous moves, log moves, model
moves, and d-dependencies. Assuming the ideal p-alignment γ∗ is known for a given
case, we can compute a p-trace and compare an (optimal) p-alignment γ′ of the p-trace
to the ideal p-alignment as follows.

– For each synchronous move ms ∈ γ′, if ms is also found in the ideal p-alignment
γ∗, the synchronous move ms is True Positive (TP); if ms not found in γ∗, ms is
False Positive (FP). The same for each log move, model move and d-dependency
found in γ′.

– For each synchronous move ms∗ found in the ideal p-alignment γ∗ but not in γ′,
ms∗ is considered to be a False Negative (FN). The same for each log move, model
move and d-dependency found in γ∗.

As additional quality metric, we can compute the F1-score F = (2 × TP)/(2 ×
TP + FP + FN) for the moves and dependencies identified, which is the harmonic
mean of recall and precision [9].

Note that by definition, an s-alignment is also a p-alignment and thus can be com-
pared to an ideal p-alignment. For example, we can convert the s-alignment in Fig-
ure 3(b) into the p-alignment shown in Figure 8. Assuming Figure 5 shows the ideal
p-alignment of the same case in Figure 3(a), the first row and the second row in Table 1
respectively show the quality metrices for the ideal p-alignment and the s-alignment
(compared to the ideal p-alignment). For instance, in the s-alignment we found one FP
synchronous move E (i.e. the five-sided polygon E), which is a log move in the ideal
p-alignment (i.e. a FN log move) in Figure 5. This example shows that the s-alignment
approach may classify abnormal behavior as conforming. Furthermore, the FP log move
L found in the s-alignment is classified as a synchronous move in the ideal alignment:
the s-alignment approach may claim conforming behavior as deviating.

4 Conversion and Comparison

In Section 3, we explained our approach for computing an optimal p-alignment when
given a p-trace. In this section, we discuss ways to compute p-traces. Recall the four

TP(S)

FP(L)

TP(L) TP(S) TP(S)

FP(M) FP(S)

TP(S)
TP TP

FP FP FP FP FP
(L) - Log moves
(M) - Model moves
(S) - Sync. moves

Fig. 8: A p-alignment which visualizes the s-alignment in Figure 3(b).

types of log defined in the introduction, if a log (with or without data) is already par-
tially ordered, i.e. Type C and D, we can simply consider its p-traces and neglect the
data attributes. For sequential logs with or without data attributes (i.e., type B and A, re-
spectively), we illustrate for each type an example to compute partially ordered traces.
In addition, we motivate p-alignments by using these examples and compare the results
based on our alignment quality metrics.

4.1 Type A - Sequential Logs without Data

Type A denotes sequential event logs without data. Each log of this type is a collection
of s-traces in which each event has only the basic attributes: the event identifier, the
activity name and the timestamp. For this type of log, there are various situations in
which we can compute p-traces and use the p-traces to obtain p-alignments. One of
the possible situations is when the timestamps of events are coarse, and the ordering of
events are unreliable. For instance, for each event only the date is recorded which may
lead to multiple events having the same timestamp, exemplified by the trace in Figure 3
in which all seven events occurred on the same day.

Event

Fig. 9: A p-trace for
Figure 3(a) derived
based on timestamps.

TP(S)

TP(S)

FP(S)TP(S)

TP(S) TP(L)

TP(S)

TP
TP

TP

TP TP
FP

Fig. 10: An optimal p-
alignment for the p-trace
in Figure 9.

A simple approach to com-
pute p-traces in this situation is
to consider the events having the
same timestamp to be concur-
rent. This approach adds flexibil-
ity when computing alignments
and removes false positive log
moves and model moves. Figure 9
shows the p-trace computed for
the s-trace shown in Figure 3 us-
ing this approach. Since all seven
events have the same timestamp, they are considered to be concurrent, i.e. no depen-
dency between them as shown in Figure 9. Therefore, the events could have happened
at any order, resulting in the p-alignment shown by Figure 10.

Computing the quality metric of the p-alignment shown in Figure 10 with respect to
the ideal alignment shown in Figure 5, we obtain the result shown by the third entry in
Table 1. Compared to the s-alignment shown in Figure 8 of the same case, there are no
FP log moves or FP model moves in the p-alignment, and only one FP d-dependency.
Moreover, we find 2.5 times more TP d-dependencies.

4.2 Type B - Sequential Logs Annotated with Data

In this section, we first define data annotated logs and then discuss how to use this type
of log to compute p-traces.

Definition. We use the term Data Annotated Log (DAL) to denote a specific type of
event log, in which each event has a set of clearly annotated input attributes and of
output attributes, i.e. in addition to the name and the value of an attribute, we also have
a meta data for each attribute which indicates whether the attribute is an input or an

output of the event. Input attributes of an event are attributes that already existed and
are read when executing the activity that results in the event. Similarly, output attributes
of an event are attributes that are written (created or updated) by the event. In addition,
we assume that if the value of a data attribute d1 depends on the value of another data
attribute d2, there exists an event that reads d1 and writes d2.

Figure 11 shows an s-trace of the same case as in Figure 3 but with data. Each event
has additional data attributes that are annotated as inputs (written in italics) or outputs
(underlined). The column names denote the abbreviated identifier of attributes defined
in the process model shown in Figure 2.

Obtaining DAL. One may argue that this type of log is difficult to obtain. However,
there are simple heuristics to convert a log enriched with data attributes but without
annotations to a DAL. Given a log in which each event has a set of data attributes, if a
specification of the input and output attributes of each activity is available (e.g. given
by a domain expert or documented as shown in Figure 2), we can use this specification
to annotate the data attributes of events in a log. Otherwise, we can determine for each
event in a trace and each of its data attributes whether it is an input or an output using
the following heuristics:
1. When a data attribute appears the first time in an event in the trace, the event has

output the data (e.g. attribute p of event 1 and attribute e of event 6 in Figure 11);
2. Every time the data attribute with the same data attribute name appears in a suc-

ceeding event, if the value of this attribute has changed compared to the previous
appearance, then the event has output the data (e.g. attribute e of event 7 in Fig-
ure 11 has a different value compared to the previous event E that has attribute e,
therefore, attribute e of event 7 is annotated as output (i.e. underlined));

3. Otherwise, the data is an input of the event (e.g. attribute p in events 2 − 6 is
considered as input because the value of p is not changed).

Thus, Figure 11 also exemplifies a trace annotated using this simple heuristic. We have
illustrated a simple heuristic approach to show that it is possible to obtain DALs without
any specification. Finding better heuristics is a relevant topics, but out of scope of this
paper. In the following, we assume that DALs are available for computing p-traces.

Computing Partially Ordered Traces. After obtaining a data annotated sequential log,
the data dependencies between the input and output attributes of events can be used to
derive dependencies and concurrency between events. When two events ei and ej in a
trace with i < j accessed a common data attribute, we assume that there is a dependency
between the two events. Based on this assumption, we derive two rules: (1) when two

Fig. 11: An s-trace with
annotated attributes.

Event
(D-)Dependency

Fig. 12: A p-trace for Fig-
ure 11 derived based on
data dependencies.

TP(S)
TP(S)

TP(S)

TP(S)

TP(S)FP(S)TP

TP

TP
TP

TP
TP

TP

Fig. 13: An optimal p-
alignment for the p-trace
in Figure 12.

events both read (or write) the same data attribute with the same value, then they are
concurrent; (2) otherwise, there is a dependency between them.

For example, shown in Figures 11 and 12, events D (event 3) and R (event 4) (only)
have data element p in common but both have read the same value for p which indicates
there is no dependency between D and R, whereas events D (event 3) and C (event 5)
have data element p and d in common and since D writes d and C read d, we add a
dependency from D to C.

Using the p-trace shown in Figure 12 as input, we compute an optimal p-alignment
shown in Figure 13. The fourth entry in Table 1 shows the measurement of this p-
alignment. Compared to the s-alignment, the p-alignment in Figure 13 shows the same
improvements as the p-alignment in Figure 10. Moreover, the p-alignment computed
using data dependencies is able to locate the log move D more precisely than the other
two alignments, increasing the true positive d-dependencies to 7.

5 Experimental Results

We implemented our p-alignment approach described in Sections 3 and 4 in the Par-
tialOrderReplayer package of the process mining toolkit ProM. The package provides
the plug-in named Partial Aware Replayer. To evaluate our approach, we designed the
hospital model shown in Figure 2 in a tool called CPN Tools and randomly simulated
an event log of 1000 traces with in total 6590 events1; each trace with 6 to 12 events.
All events have the same timestamp, and each has 1 to 5 data attributes as specified in
Figure 2. We performed four small experiments2. For each experiment, we computed
three types of optimal alignments using three approaches: (1) s-alignments using the
approach in [7]; (2) p-alignments using the p-traces converted based on the approach
for Type A logs described in Section 4.1; (3) p-alignments of the p-traces obtained us-
ing the approach for Type B logs (with data attributes already annotated) described in
Section 4.2. The quality of each optimal alignment is measured with respect to the ideal
alignment, which is known since the log is generated artificially.

– Experiment 1. In this experiment, the input is the perfectly generated sequential
log in which all events are correctly ordered.

– Experiment 2 with shuffled events. The perfectly generated event log is used but
the events in a trace are randomly shuffled. Thus the ordering of events is unreliable.

– Experiment 3. The input is the generated sequential log with deviations added
as follows. For each trace, two events are added, and two are removed from the
trace. For each event added, a predecessor and a successor are randomly chosen
which ensure the true direct causal dependencies (for obtaining ideal alignments
only). Each added event is then inserted between the range of its predecessor and
successor and has the same timestamps as other events. Each added event reads a
data attribute produced by its predecessor and writes an output data attribute being
an input to it successor.

– Experiment 4 with shuffled events. For this experiment, we randomly shuffled the
events of each trace in the log obtained in experiment 3.

1 The files can be downloaded at https://svn.win.tue.nl/repos/prom/Documentation/PartialOrderReplayer/SBP2014.zip
2 The implementation of the experiments can be found in the same package of ProM (i.e. the class ExperimentSBP)

Table 2: The average results of 10 runs of the four experiments.

Moves d-dependencies

Sync. Moves Log Moves Model Moves

TP FP FN TP FP FN TP FP FN F1 TP FP FN F1

Exp 1. Seq. 6.59 0 0 0 0 0 0 0 0 1∗ 4.28 1.31 2.31 0.70
A 6.59 0 0 0 0 0 0 0 0 1∗ 6.54 0.05 0.05 0.99
B 6.59 0 0 0 0 0 0 0 0 1∗ 6.59 0 0 1.00

Exp 2. Seq. 3.61 0 2.98 0 2.98 0 0 2.64 0 0.71∗ 3.07 5.16 3.52 0.41
shuffled A 6.59 0 0 0 0 0 0 0 0 1∗ 6.48 0.11 0.11 0.98

B 4.09 0 2.50 0 2.50 0 0 2.29 0 0.77∗ 5.72 3.44 0.87 0.73

Exp 3. Seq. 4.21 0.60 0.38 1.40 0.38 0.60 1.64 0.08 0.36 0.84 3.92 3.39 5.68 0.46
A 3.94 1.23 0.65 0.77 0.65 1.23 1.39 0.02 0.61 0.69 5.40 1.18 4.20 0.67
B 4.03 0.92 0.56 1.08 0.56 0.92 1.53 0.06 0.47 0.76 6.60 1.96 3.00 0.73

Exp 4. Seq. 2.43 0.84 2.16 1.16 2.16 0.84 1.48 1.51 0.52 0.55 2.93 5.65 6.67 0.32
shuffled A 3.93 1.24 0.66 0.77 0.66 1.24 1.39 0.02 0.61 0.69 5.28 1.29 4.32 0.65

B 2.67 1.04 1.92 0.96 1.92 1.04 1.46 1.19 0.54 0.55 5.23 4.42 4.37 0.54
∗ denotes F1 scores of synchronous moves. The discussed results are underlined.

Discussion. Table 2 shows the average quality measurements per optimal p-alignment
(rounded in two decimals) of ten random executions of each experiment. In addition, we
added the average F1-scores of moves (column 12) and of d-dependencies (column 16).
The difference between the scores of the three types of p-alignments is significant for
experiments 2 to 41. Figure 14 illustrates the confidence intervals of the TP synchronous
move rates of experiment 3 and 4 (i.e. the last 6 entries in column 3 of Table 2).

Fig. 14: The CIs of TP Sync.
moves of Exp.3 and 4.

As can be seen in the last four columns of Table 2,
in all four experiments, the TP, FP and FN scores of
d-dependencies of the p-alignments are improved com-
pared to the s-alignments, identifying 1.5 to 3.4 TP d-
dependencies more and 1.2 to 5 FP d-dependencies less
per alignment on average compared to the s-alignments.
An increase of 40% to 130% percent of the F1-scores
of the d-dependencies in the p-alignments confirms this
observation.

The results also show that when the ordering of
events is unreliable, i.e. in Exp. 2 and Exp. 4, the two
p-alignment approaches identify more TP synchronous
moves and less FP log moves and FP model moves
than the s-alignment approach, which suggest that the
p-alignment approaches are more flexible. However, this
flexibility also leads to identifying more FP synchronous
moves (in Exp. 3 and 4). The average F1-scores of moves
also show that the p-alignment approaches perform at least as good as the s-alignment
approach except in situations when the ordering of events is reliable and traces contain
noise as in Exp. 3.

Based on the results of the experiments, we have shown that we can obtain better
results using the p-alignment approach, especially in unreliable and flexible settings. In
addition, the difference between the quality metrics of the two p-alignment approaches
indicates that the quality of p-alignments also depends on the quality of derived p-traces.

6 Related Work

Various techniques have been proposed to check conformance between the modeled
and observed behavior. The token-based replay approach proposed by Rozinat and Van
der Aalst [1] measures the number of remaining tokens and of missing tokens in the
process model when replaying the log to provide diagnotics about the quality of the
model and deviations in the log. The state-of-art technique in conformance checking
is the alignment approach proposed by Adriansyah et al. [6, 2, 7] which can handle
complex constructs such as invisible transitions and duplicated transitions while pro-
viding detail information on deviations. The resulting diagnostics of these techniques
have been applied in various context. For example, it is used to assess the quality of
a model with respect to the reality [10], to repair or simplify models based on diag-
nosed deviations [11, 5], to perform auditing and compliance analysis [12, 3, 2], to find
decision points in processes [13], to conduct root cause analysis [14] and performance
analysis [4].

While using the result of conformance checking in various applications, much less
literature are found in investigating the quality of the input of conformance checking as
well as the quality of its results. Bose et al [15] discussed various quality issues found in
event logs. The alignment approach assumes that with assigning the right cost to moves
the “ideal alignment” can be found in optimal alignments [6, 4] without considering
that the log may have quality problems.

In comparison to existing conformance checking techniques, the approach pre-
sented in this paper used partially ordered traces and alignments to provide a way
to incorporate flexibility, uncertainty, concurrency and explicit dependencies in inputs
as well as in outputs of conformance checking to improve the quality of results. Par-
tially ordered traces and runs have been defined and discussed in diverse other settings.
Lorenz et al. define partially ordered runs of Petri nets in order to analyze properties of
Petri nets [16]. Lassen et al. presented an approach to convert basic message sequence
charts into p-traces and used these explicit casual dependencies to improve the process
discovery result [17]. Fahland and Van der Aalst used partially ordered runs to simplify
process models [11].

7 Conclusion

In this paper, we presented a generic approach for computing partially ordered align-
ments using partially ordered traces. In addition, we illustrated two ways to obtain par-
tially ordered traces as input for computing p-alignments from given sequential event
logs. Furthermore, we introduced a quantitative quality metric to compare alignments
with respect to the ideal alignments. The evaluation results show that the quality of p-
alignments is improved compared to s-alignments especially in unreliable settings. Our
approach provided a first step towards improving the quality of conformance checking
in more realistic circumstances.

Future research aims at incorporating probabilistic data to find better p-alignments.
In addition, we are also interested in approaches to compute the ideal partially ordered
trace. Moreover, partially ordered alignments can be used to analyze data flows or to
compute alignments in a distributed manner.

Acknowledgments. This research is supported by the Dutch Cyber Security program
in the context of the PriCE project. We thank Boudewijn van Dongen for his support in
this work.

References

1. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on monitoring
real behavior. Information Systems 33(1) (2008) 64–95

2. Adriansyah, A., van Dongen, B.F., Zannone, N.: Controlling break-the-glass through align-
ment. In: Social Computing, 2013 International Conference on, IEEE (2013) 606–611

3. Ramezani, E., Fahland, D., van der Aalst, W.M.P.: Where Did I Misbehave ? Diagnostic
Information in Compliance Checking. (2012) 262–278

4. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying history on process models
for conformance checking and performance analysis. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery 2(2) (2012) 182–192

5. Fahland, D., van der Aalst, W.M.P.: Model repair aligning process models to reality. Infor-
mation Systems (2013)

6. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Conformance checking using cost-
based fitness analysis. In: Enterprise Distributed Object Computing Conference (EDOC),
2011 15th IEEE International, IEEE (2011) 55–64

7. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Memory-efficient alignment of
observed and modeled behavior. BPMcenter. org, Tech. Rep (2013)

8. Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph. SIAM
Journal on Computing 1(2) (1972) 131–137

9. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to information retrieval. Volume 1.
Cambridge university press Cambridge (2008)

10. Buijs, J.C., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness, precision,
generalization and simplicity in process discovery. In: On the Move to Meaningful Internet
Systems: OTM 2012. Springer (2012) 305–322

11. Fahland, D., van der Aalst, W.M.P.: Simplifying discovered process models in a controlled
manner. Information Systems 38(4) (2013) 585–605

12. Cederquist, J.G., Corin, R., Dekker, M.A.C., Etalle, S., den Hartog, J.I., Lenzini, G.: Audit-
based compliance control. International Journal of Information Security 6(2-3) (February
2007) 133–151

13. Leoni, M.d., Dumas, M., Garcı́a-Bañuelos, L.: Discovering branching conditions from busi-
ness process execution logs. In: Fundamental Approaches to Software Engineering. Springer
(2013) 114–129

14. Suriadi, S., Ouyang, C., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Root cause analysis
with enriched process logs. In: Business Process Management Workshops, Springer (2013)
174–186

15. Bose, R.P.J.C., Mans, R.S., van der Aalst, W.M.P.: Wanna improve process mining results?
In: Computational Intelligence and Data Mining (CIDM), 2013 IEEE Symposium on, IEEE
(2013) 127–134

16. Lorenz, R., Desel, J., Juhás, G.: Models from scenarios. In: Transactions on Petri Nets and
Other Models of Concurrency VII. Springer (2013) 314–371

17. Lassen, K.B., van Dongen, B.F.: Translating message sequence charts to other process lan-
guages using process mining. In: Transactions on Petri Nets and Other Models of Concur-
rency I. Springer (2008) 71–85

