Model Repair — Aligning Process Models to Reality

Dirk Fahland, Wil M.P. van der Aalst
Eindhoven University of Technology, The Netherlands

Abstract

Process mining techniques relate observed behavior (i.e., event logs) to modeled
behavior (e.g., a BPMN model or a Petri net). Process models can be discovered
from event logs and conformance checking techniques can be used to detect and
diagnose differences between observed and modeled behavior. Existing process
mining techniques can only uncover these differences, but the actual repair of the
model is left to the user and is not supported. In this paper we investigate the
problem of repairing a process model w.r.t. a log such that the resulting model
can replay the log (i.e., conforms to it) and is as similar as possible to the original
model. To solve the problem, we use an existing conformance checker that aligns
the runs of the given process model to the traces in the log. Based on this
information, we decompose the log into several sublogs of non-fitting subtraces.
For each sublog, either a loop is discovered that can replay the sublog or a
subprocess is derived that is then added to the original model at the appropriate
location. The approach is implemented in the process mining toolkit ProM and
has been validated on logs and models from several Dutch municipalities.

Keywords: process mining, model repair, Petri nets, conformance checking

1. Introduction

Process mining techniques aim to extract non-trivial and useful information
from event logs [1, 2]. The process mining spectrum ranges from operational
support techniques (predictions and recommendations) to techniques to identify
bottlenecks and decision rules [1]. The two main (and best known) types of
process mining are (1) process discovery and (2) conformance checking.

Process discovery techniques automatically construct a process model (e.g.,
a Petri net or a BPMN model) from an event log [1, 3-8]. The basic idea of
control-flow discovery is very simple: given an event log containing a collection of
traces, automatically construct a suitable process model “describing the behavior”
seen in the log. However, given the characteristics of real-life event logs, it is
notoriously difficult to learn useful process models from such logs. Event logs

Email addresses: d.fahland@tue.nl (Dirk Fahland), w.m.p.v.d.aalst@tue.nl (Wil M.P.
van der Aalst)

Preprint submitted to Information Systems July 3, 2013

only contain example behavior and do not explicitly indicate what is impossible.
The fact that an event log does not contain a particular trace does not imply
that that trace is impossible. Moreover, a process discovery technique needs
to mediate between different concerns, e.g., fitness (ability to explain observed
behavior), simplicity (Occam’s Razor), precision (avoiding underfitting), and
generalization (avoiding overfitting).

The second type of process mining is conformance checking [4, 9-17]. Here,
an existing process model is compared with an event log of the same process.
Conformance checking can be used to check if reality, as recorded in the log,
conforms to the model and vice versa. The conformance check could yield that
the model does not describe the process executions observed in reality: activities
in the model are skipped in the log, the log contains events not described by
the model, or activities are executed in a different order than described by the
model.

In case an existing process model does not conform to reality one could —
in principle—use process discovery to obtain a model that does. However,
the discovered model is likely to bear no similarity with the original model,
discarding any value the original model had, in particular if the original was
created manually. A typical real-life example is the reference process model of a
Dutch municipality shown in Fig. 1(left); when rediscovering the actual process
using logs from the municipality one would obtain the model in Fig. 1(right).

Model Repair: between conformance checking and discovery

A more promising approach is to repair the original model such that it can
replay (most of) the event log while staying close to the reference model (cf.
Fig. 1(middle)). In [18], we introduced a new type of process mining: model
repair. Like conformance checking we use a process model N and an event log
L as input. If model N conforms to L (i.e., the observed behavior can be fully
explained by the model), then there is no need to change N. However, if parts of
N do not conform to L, these parts can repaired using the technique presented
in this paper. Unlike discovery, the parts of the model that are not invalidated
by the event log are kept as is. The resulting repaired model N’ can be seen as
a “synergy” of original process model N and event log L.

There are three main use cases for model repair:

e Improving conformance checking diagnostics. Conformance checking identi-
fies discrepancies between modeled and observed behavior, e.g., by showing
misalignments or places where tokens are missing during replay. However,
it is not easy to see what the actual conformance problem is and how to
resolve it. By highlighting the repaired parts of the repaired model, one
can show discrepancies succinctly. As usual, conformance problems may
lead to adaptations of the actual process (e.g., better work instructions
or more control) or to changes of the model to reflect reality better. In
the latter case the repaired model can be used as the new normative or
descriptive model.

Figure 1: Original model (left), model (middle) obtained by repairing the original model w.r.t.
a given log, and model (right) obtained by rediscovering the process without considering the
original model. The highlighted parts in the repaired model have been added to better fit the
observed behavior.

e Monitoring process evolution. Processes may evolve over time, e.g., workers
start handling cases differently, informal procedures change, or people adapt
to changing external circumstances. This implies that the corresponding
process models need to be updated to be of any value. Model repair shows
the parts of the old model that no longer fit. These parts can be adapted
to reflect the new situation.

e Supporting customization. Different process variants and organizational
units may share some initial reference model, e.g., a model describing best
practices or a modeling template. For example, municipalities may use a
standard reference model for processing building permits, but still there
will be differences between municipalities (e.g., the moment of payment).
Organizations using enterprise software may use reference models provided
by the vendor, but their actual processes may deviate from these initial
models. Model repair can be used to customize the initial reference model.
The resulting model is close to the reference model, but more accurately
describes reality for a specific process or organizational unit.

For all three use cases it is important that the repaired model remains as close to
the original model as possible. For example, when monitoring process evolution
one would not like to completely change the process repeatedly if the changes
are gradual or local. For customization it is also important to stay as close to
the initial reference model as possible (e.g., to more effectively communicate
differences).

Since it may be undesirable to modify the process model to accommodate
infrequent highly exceptional behavior, one may choose to repair the model only
for frequently observed deviating behavior. The influence of the original model
on the repaired model may be configurable. Effectively, there are two extremes.
One extreme is to avoid changes to the original model as much as possible. The
other extreme is to simply discover the process model from the event log with
little consideration for the original model. In this paper, we avoid the latter case
as much as possible. We try to stay as close to the original model as possible,
e.g., to clearly communicate the differences.

Scope: repairing control-flow to fit an event log

In this paper we focus on repairing control-flow problems and only briefly
discuss repairing other perspectives such as data flow and work distribution.
There are two main reasons for this. First of all, the control-flow structure forms
the backbone of the process model. Hence, other perspectives are only considered
when the control-flow is fixed. Second, it is generally intractable to consider all
perspectives at the same time. The choice to first focus on control-flow is common
in process mining. Consider for example decision mining approaches that first
fix the decision points and only then use classical data mining approaches to
describe the choices in terms of e.g. decision trees [19]. Another example is
the alignment-based approach to check conformance with respect to data and
resources described in [20]. In [20] it is demonstrated that the alignment-based
techniques also used in our repair approach can be extended to data and resources.
However, already for conformance checking this is computationally challenging.
For discovery and repair it seems better to first focus on the control-flow and in
a second phase repair the other perspectives. In any case, it is straightforward
to the extend the approach in this paper to also cover additional perspectives.

The main criterion for repair used in this paper is fitness, i.e., our first concern
is to extend the model such that the observed behavior can be explained by
the model. There are also other considerations such as avoiding overfitting and
underfitting and the desire to produce a simple model. However, these are of
secondary concern in this paper. It does not make any sense to reason about
a model with poor fitness (as is demonstrated in [21]). If the model is unable
to replay most of the events in the log, there is no point in trying to balance
overfitting and underfitting. Moreover, the secondary concerns can be addressed
in a pre- or post-processing phase. For example, infrequent paths can be removed
to increase precision and simplicity.

Problem definition and approach

The concrete problem addressed in this paper reads as follows. We assume a
Petri net N (a model of a process) and a log L (being a multiset of observed
cases of that process) to be given. N conforms to L if N can execute each case
in L, i.e., N can replay L. If N cannot replay L, then we have to change N to a
Petri net N’ such that N’ can replay L and N’ is as similar to N as possible.

We solve the repair problem in a compositional way: we identify subprocesses
that have to be added in order to repair N. In more detail, we first compute

for each case [€ L an alignment that describes at which parts N and [deviate.
Based on this alignment, we identify transitions of N that have to be skipped to
replay [and which particular events of [could not be replayed on N. Moreover,
we identify the location at which N should have had a transition to replay each of
these events. We group sequences of non-replayable events at the same location
to a sublog L' of L. For each sublog L', we construct a small subprocess N’
that can replay L’ by using a process discovery algorithm. We then insert N’
in N at the location where each trace of L’ should have occurred. By doing
this for every sublog of non-replayable events, we obtain a repaired model that
can replay L. Moreover, by the way we repair N, we preserve the structure of
N giving process stakeholders useful insights into the way the process changed.
We observed in experiments that even in case of significant deviations we could
identify relatively few and reasonably structured subprocesses: adding these to
the original model always required fewer changes to the original model than a
complete rediscovery. Repairing the model of Fig. 1(left) in this way yields the
model shown in Fig. 1(middle).

Extending an earlier version of this article [18], we investigate several options
for improving the above method of model repair. In particular, we show how
choosing the “right” alignment of L to N influences repairs of N in a favorable
way. We show how to decompose and align sublogs on non-fitting traces such
that subprocesses added to N have a simple structure. We present heuristics
for improved placement of subprocesses in N, and introduce a technique to
identify loops that can be added to N instead of a subprocess. Also, we highlight
techniques for preprocessing logs to improve the quality of the repaired model.
The introduced techniques for model repair are evaluated experimentally and
compared to a high-quality manual repair. We also investigate limitations of
repeatedly repairing a model with respect to several logs.

The remainder of this paper is structured as follows. Section 2 recalls basic
notions on logs, Petri nets and alignments. Section 3 investigates the model
repair problem in more detail. Section 4 presents a solution to model repair
based on subprocesses. Section 5 introduces a number of improvements on this
basic model repair technique. We report on experimental results in Sect. 6 and
discuss related work in Sect. 7. Section 8 concludes the paper.

2. Preliminaries

This section recalls the basic notions on Petri nets and introduces notions
such as event logs and alignments.

2.1. Event Logs

Event logs serve as the starting point for process mining. A process model
describes the life-cycle of cases of a particular type, e.g., insurance claims,
customer orders, or patient treatments. Hence, each event refers to a case.
Moreover, each event refers to some activity and all events corresponding to
a particular case are ordered. In other words: each case is described by a

sequence of events. Next to its activity name, an event may have many other
attributes, such a timestamp, the resource(s) involved, the transaction type (start,
complete, abort, etc.), associated costs, etc. For example, in 2010 the IEEE
Task Force on Process Mining standardized XES (www.xes-standard.org), a
standard logging format that is extensible and supported by the OpenXES
library (www.openxes.org) and by tools such as ProM, XESame, Disco, etc.
XES allows for standard attributes such as timestamp, but also allows for the
addition of any number of event attributes.

In this paper, we focus on control-flow and assume that an event is represented
by an action. As a result, a trace is a sequence of actions, an event log can be
defined as a multiset of traces. Each trace describes the life-cycle of a particular
case (i.e., a process instance) in terms of the activities executed.

Definition 1 (Trace, Event Log). Let ¥ be a set of actions. A trace [€ ¥* is a
sequence of actions. L € B(X*) is an event log, i.e., a multiset of traces.

An event log is a multiset of traces because there can be multiple cases having
the same trace. If the frequency of traces is irrelevant, we refer to a log as a
set of traces L = {ly,...,l,}. In this simple definition of an event log, an event
is fully described by an action and we cannot distinguish two cases having the
same trace.

Additional attributes may be incorporated in the action, e.g., action decide(goldcustomer, John, reject)
may refer to a decision to reject a gold customer made by John. Action
decide(goldcustomer, Mary, reject) refers to the same decision made by Mary.
Adding attributes to the action label results in a large number of different actions.
Hence, process mining becomes difficult. Whereas conformance checking is still
possible [20] discovery and repair quickly become intractable. Therefore, we pro-
pose a two-stage approach where first the control-flow is discovered or repaired.
After fixing the control-flow one can consider the other attributes as shown
in [19] and [22]. Note that the concept of alignments described in Section 2.4
can be extended to accommodate additional attributes and process models can
be extended with decision rules and resource allocation rules. However, for
simplicity we abstract from these perspectives.

2.2. Petri Nets

We use labeled Petri nets to describe processes. We first introduce unlabeled
nets and then lift these notions to their labeled variant.

Definition 2 (Petri net). A Petri net (P, T, F) consists of a set P of places, a
set T of transitions disjoint from P, and a set of arcs F C (P xT)U (T x P). A
marking m of N assigns each place p € P a natural number m(p) of tokens. A
net system N = (P, T, F,mg,my) is a Petri net (P, T, F') with an 4nitial marking
mo and a final marking my.

We write *y := {z | (z,y) € F} and
y® :={z | (y,x) € F} for the pre- and
the post-set of y, respectively. Fig. 2

Figure 2: A net system N.

shows a simple net system N with the
initial marking [p;] and final marking
[ps]. N will serve as our running ex-
ample.
The semantics of a net system N
are typically given by a set of sequential runs. A transition ¢t of N is enabled
at a marking m of N iff m(p) > 1, for all p € *t. If ¢ is enabled at m, then t

may occur in the step m AN my of N that reaches the successor marking my
with m:(p) = m(p) — 1 if p € *t\ t*, mi(p) = m(p) +1if p € t*\ *¢, and
m¢(p) = m(p) otherwise, for each place p of N. A sequential run of N is a

1 to tr tit1 .

sequence mg — My — Mg ... — my of steps m; —— m;11,i =0,1,2,... of
N beginning in the initial marking m¢ and ending in the final marking my of N.
The sequence o = tito ...t is an occurrence sequence of N. For example, in the
net N of Fig. 2 transition a is enabled at the initial marking; abcd is a possible
occurrence sequence of N.

The transitions of a Petri net can be labeled with names from an alphabet
3. In particular, we assume label 7 € ¥ denoting an invisible action. A labeled
Petri net (P,T,F,{) is a net (P,T,F) with a labeling function ¢ : T — X. A
labeled net system N = (P,T,F,{,my,my) is a labeled net (P, T, F,{) with
initial marking mg and final marking my. The semantics of a labeled net are the
same as for an unlabeled net. Additionally, we can consider labeled occurrence
sequences of N. FEach occurrence sequence o = titots... of N induces the
labeled occurrence sequence £(o) = £(t1)l(t2)€(t3) ... L(t)|s\{r} obtained by
replacing each transition ¢; by its label ¢(¢;) and omitting all 7’s from the result
by projection onto X\ {7}. We say that N can replay a log L iff each] € L is a
labeled occurrence sequence of N.

2.3. Relating Event Logs and Process Models

Our repair approach assumes that the event log and the labeled Petri net
refer to a common set of actions X. Ideally, event log and process model refer to
a common ontology. In reality this is often not the case. Besides differences in
naming, there may be differences in granularity and coverage.

The event log may contain information about low level events that do not
correspond to activities in the model. For example, the trace segmentation
approach described in [23] aims to group low-level events into clusters, which
represent the execution of a higher-level activity in the process model. By
projecting these clusters onto the higher-level activities, the abstraction level
can be lifted. In [24] the same problem is addressed by mining for common
low-level repeating patterns that are replaced by higher level activities. The
latter approach made it possible to successfully apply process mining to the
event logs of Philips Healthcare’s X-ray machines. In [25] a similar approach
was applied to the low-level event logs of ASML’s wafer steppers.

Whereas differences in granularity are difficult to tackle, differences in cover-
age are relatively easy. Events in the event log that do not correspond to any

activity can be removed from the event log. Activities in the model that are
unobservable can be labeled as 7 actions [1].

In the following we assume that event log and process model have been
preprocessed and refer to a common set of actions 3; though log and model may
use just a subset of X.

2.4. Aligning an Event log to a Process Model

Conformance checking techniques investigate how well an event log L € IB(X*)
and a labeled net system N = (P, T, F, £, mg, my) fit together. The process model
N may have been discovered through process mining or may have been made by
hand. In any case, it is interesting to compare the observed example behavior
in L and the potential behavior of N. In case the behavior in L is not possible
according to N (N cannot replay L), we want to repair N.

In the following we recall a state-of-the-art technique in conformance checking
[9-11]. We use the concept of alignments for identifying where L and N deviate,
and hence where N has to be repaired. These alignments will allow us to
determine a minimal set of changes that are needed to replay L on N. It
essentially boils down to relating [€ L to an occurrence sequence o of N such
that [and o are as similar as possible. When putting [and ¢ next to each other,
i.e., aligning o and [, we will find (1) at which point a particular activity of
N should have occurred but did not according to ! and (2) at which point a
particular activity of [occurred, but was not described by N [9].

Alignments are very different from well-known edit distances such as the
Levenshtein distance [26]. First of all, we are aligning a trace and a model and
not two traces or sets of traces. As a model has usually infinitely many traces
(in case of loops) the least deviating trace cannot be found by enumerating
all traces and computing their edit distance. Second, we would like to assign
arbitrary costs to the different types of deviations. And finally, we are not just
interested in the distance between trace and model, but in their exact deviations.
Therefore, we turn the problem into an optimization problem. For applications
of the edit distances to process mining, we refer to [27].

To explain the alignment concept consider a trace ! = accd which is sim-
ilar to the occurrence sequence o = abcd of the net of Fig. 2 where trace [
deviates from o by skipping over b and having an additional c. An alignment
shows a possible correspondence between trace I and occurrence sequence o:

alc|>] c|d

ajc|[b[>]d
trace [. The projection onto the second row (ignoring >>) yields trace o. The
> in the first row corresponds to the skipping of b in the log and the >> in the
second row corresponds to the skipping of the second c in the model. Obviously,
such an alignment provides input for repairing the event log.

In [9-11] an approach was presented that allows to automatically align a
trace [to an occurrence sequence of N with a minimal number of deviations
(i.e., > insertions) in an efficient way. All of this is based on the notion of an
alignment and a cost function.

. The projection onto the first row (ignoring >>) yields

Definition 3 (Alignment). Let N = (P, T, F, ¢, mg) be a labeled net system. Let
| =ajas...a, beatrace over . A move is a pair (b, s) € (SU{>>}) x (TU{>})\
{(>,>)}. An alignment of | to N is a sequence o = (by, s1)(be, s2) . . . (b, sk)
of moves, such that

1. the restriction of the first component to actions X is the trace [, i.e.,
(biba ... bg)|s =1,

2. the restriction of the second component to transitions T, (s182 ... sk)|r, is
an occurrence sequence of NV, and

3. transition labels and actions coincide (whenever both are defined), i.e., for
alli=1,....k, if s; #>>,0(s;) # 7, and b; # >, then {(s;) = b;.

Move (b;, s;) is called (1) a move on model iff b; =>> A s; # >, (2) a move
on log iff b; # > N s; =>, and (3) a synchronous move iff b; # > A s; # >>.

Note that in Fig. 2 transition names and transition labels coincide, i.e., T =%
and ((t) =t for t € T. However, the definition allows for multiple transitions
having the same label and invisible transitions having a 7 label.

For instance, for trace [= accd and the net of Fig. 2, a possible alignment
alc|>] c|d
a ‘ c ‘ b ‘ > ‘ d’

Each trace usually has several (possibly infinitely many) alignments to N.
For instance, possible alignments for trace [= abcbd and the net of Fig. 2 are:

would be (a,a)(c,c)(>>,b)(c,>)(d,d), also denoted as:

_alblc|b|d _alblc|>]|b]d d
“=y b‘c‘»‘d’az_a‘b‘c‘e‘b‘d’an
ol blc|[b]>]|>]d
Tal>>>[cb [d”

We are typically interested in a best alignment, i.e., one that has as few
non-synchronous moves (move on model or move on log) as possible. One way to
find a best alignment is to use a cost function on moves, and to find an alignment
with the least total cost.

Definition 4 (Cost function, cost of an alignment). Let x : 3UT — IN define for
each transition and each action a non-negative cost: x(z) > 0 for allz € B UT.
The costs of an invisible action is set to zero: k(z) = 0if z € T and ¢(z) = 7. The
cost of a move (b, s) is k(b, s) and is defined as follows: k(b,s) =0iff b #£ > #£ s
(synchronous move), k(b, s) = x(s) iff b = > (move on model), and (b, s) = k(b)
iff s = > (move on log). The cost of an alignment o = (by,s1) ... (bk, sx) is

a(a) = 521 (bis).

The cost for actions (in ¥) and for visible transitions (in N) can be chosen
freely; the specific choice of costs depends on the use case, as we discuss later.
Costs for actions and transitions raise the cost of an alignment for every move
on log or move on model. By minimizing the costs of an alignment, we avoid
moves on log and moves on model in favor of synchronous moves.

Consider for example above alignments a1, as, and ag for trace [= abcbd
and the net of Fig. 2, and a standard cost function k assigning unit costs to all
undesirable moves, i.e., k(z) =1 forall z € YUT. k(o) =1, k(az) =1, and
k(a3) = 5. Hence, a1 and ay are clearly better alignments than «asg.

Definition 5 (Best alignment). Let N = (P, T, F, £,mg) be a labeled net system.
Let x be a cost function over moves of NV and X. Let [be a trace over 3. An
alignment « (of [to N) is a best alignment (wrt.) iff for all alignments o (of
to N) holds k(o) > k(«).

Note that a trace I can have several best alignments with the same cost (cf.
a1 and ag). A best alignment « of a trace | can be found efficiently using an
A*-based search over the space of all prefixes of all alignments of [. The cost
function k thereby serves as a very efficient heuristics to prune the search space
and guide the search to a best alignment.

1. The default cost function is uniform and assigns each deviation cost 1; the
corresponding best alignment has the least number of deviations.

2. A non-uniform cost function allows to compute alignments with specific
properties. For instance, one can set costs based on how probable a
particular deviation is (low probability implies high costs). Then a log
trace is aligned to the most probable model trace showing the most probable
deviations.

3. Generally, the higher the costs of a move, the more likely it is avoided
in an alignment and replaced by other moves. This way, one can reveal
a different set of deviations that explain the difference between log and
model.

In Sect. 5, we explore cost functions which yield more favorable model repairs
than a uniform cost function. More technical details on the cost function are
given in [10, 11].

Using the notion of best alignment we can relate any trace [€ L to an
occurrence sequence of N. Hence, in the remainder, we can assume to have an
“oracle” that maps both fitting and non-fitting cases onto paths and states in the
model.

3. Model Repair: The Problem

The model repair problem is to transform a model N that does not conform
to a log L into a model N’ that conforms to L but is as close to N as possible.
We review the state-of-the-art in conformance checking and investigate the model
repair problem in more detail.

8.1. Conformance of a Process Model to a Log: Problem Dimensions

To repair a model, one first needs to diagnose the mismatches between model
N and log L. To understand what needs to be repaired we use the state-of-the-art
in conformance checking [9]. Conformance checking techniques can be used to
point out differences between modeled and observed behavior, and thus point
out parts that need to be repaired. Therefore, we briefly review conformance
checking literature.

Conformance checking can be done for various reasons. First of all, it may
be used to audit processes to see whether reality conforms to some normative

10

or descriptive model. Deviations may point to fraud, inefficiencies, and poorly
designed or outdated procedures. Second, in process evolution or process cus-
tomization conformance checking helps detecting differences between an outdated
model or a reference model and reality. Finally, conformance checking can be
used to evaluate the results of process discovery techniques. In fact, genetic
process mining algorithms use conformance checking to select the candidate
models used to create the next generation of models [5].

Numerous conformance measures have been developed in the past [4, 9-17].
These can be categorized into four quality dimensions for comparing model and
log: (1) fitness, (2) simplicity, (3) precision, and (4) generalization [1]. A model
with good fitness allows for most of the behavior seen in the event log. A model
has a perfect fitness if all traces in the log can be replayed by the model from
beginning to end. The simplest model that can explain the behavior seen in the
log is the best model. This principle is known as Occam’s Razor. A model is
precise if it is not “underfitting”, i.e., the model does not allow for “too much”
behavior. A model is general if it is not “overfitting”, i.e., the model is likely to
be able to explain unseen cases [1, 9].

The fitness of a model N to a log L can be computed using the alignments of
Sect. 2.4. For example, fitness can be defined as the fraction of moves on log or
moves on model relative to all moves [9]. The aligned event log can also be used
as a starting point to compute other conformance metrics such as precision and
generalization [9, 28]. However, as discussed earlier, the focus will be on fitness.

3.2. Repairing a Process Model to Conform to a Log: Guiding Forces

Although there are many approaches to compute conformance and to diagnose
deviations given a log L and model N, we are not aware of techniques to repair
model N to conform to log L.

There are two “forces” guiding such repair. First of all, there is the need to
improve conformance. Second, there is the desire to clearly relate the repaired
model to the original model, i.e., repaired model and original model should be
similar. Given metrics for conformance and closeness of models, we can measure
the weighted sum or harmonic mean of both metrics to judge the quality of
a repaired model. If the first force is weak (i.e., minimizing the distance is
more important than improving the conformance), then the repaired model may
remain unchanged. If the second force is weak (i.e., improving the conformance
is more important than minimizing the distance), then repair can be seen as
plain process discovery. In the latter case, the initial model is irrelevant and it
is better to use conventional discovery techniques.

Figure 3 illustrates the trade-off between both forces thus defining the repair
spectrum. On the left-hand-side of the spectrum, the focus is on keeping the
original model even if there are conformance problems. On the right-hand-side
of the spectrum, the focus is on creating a model that fits the log best even if the
resulting model is very different from the original one. Typically, model repair is
applied in settings in-between these two extremes. For example, only those parts
of the original model that are clearly problematic are repaired. Alternately, one

11

keep original model repair model discover new model

nﬁ] n o
3 o2
force 2: stay close to force 1: improve
original model conformance

Figure 3: The repair spectrum: balancing between two forces.

could make the minimal set of changes needed to reach a predefined conformance
level (e.g., 95% of all cases can be replayed).

The trade-off shown in Fig. 3 creates a major challenge: How to identify which
parts of a model shall be kept, and which parts of a model shall be considered
as non-conformant to the log and hence changed, preferably automatically? The
latter is a local process discovery problem which requires balancing the four
quality dimensions of conformance as well.

3.8. Addressing Different Quality Dimensions: Trade-Offs

In this paper, we primarily focus on fitness, which is often seen as the most
important quality dimension for process models. A model that does not fit
a given log (i.e., the observed behavior cannot be explained by the model) is
repaired using the information available in the alignments.

It does not make much sense to consider other quality dimensions [1, 2, 9]
(i.e., precision, generalization, and simplicity) when the model has poor fitness.
See [21] for experimental results showing that good fitness is a primary concern
before addressing secondary concerns such as precision, generalization, and
simplicity. For example, in [28] it is shown that only for a fitting model precision
[14] can be measured adequately.

Our technique for model repair will cater for fitness, and address precision
as a side effect. Simplicity is indirectly taken into account as we remain as
close to the original model as possible. Moreover, generalization and precision
can be balanced, for instance using a post-processing technique such as the one
presented in [29].

For model repair basically the same experiences apply as for classical process
discovery: while repairing, one should not be forced to extend the model to
allow for all observed infrequent behavior —it could result in overly complicated,
spaghetti-like models. Therefore, we propose the following approach.

1. Given a log L and model N, determine the multiset Ly of fitting traces
and the multiset L,, of non-fitting traces in L.

2. Split the multiset of non-fitting traces L,, into Ly and L,. Traces Ly are
considered as deviating and the model needs to be repaired to address these.
Traces L, are considered as outliers and do not trigger repair actions.

3. Repair model N based on the multiset L' = Ly U L of traces. L’ should
perfectly fit the repaired model N’, but there may be many candidate
models N’.

12

4. Return a repaired model N’ that can be easily related back to the original
model N, and in which changed parts are structurally simple.

8.4. Filtering The Fvent Log Before Repair: Three Approaches

Before replaying the event log on the model, we remove all cases that are
not meeting basic quality constraints. For example, there may be cases where
clearly the initial or final part of the trace is missing. This may be caused by
the fact that these cases have not yet finished or were already running before
the recording of events started. Other signs of corrupted event data are missing
timestamps or non-monotonously increasing timestamps. When the event log
contains transactional information (e.g., start and complete events), one can
also see other log-related problems (e.g., activities that were started but never
completed). Note that even when we consider just activity names in ¥ for
conformance, the other attributes still provide useful information indicating
whether a trace should be considered for repair or not.

Besides removing corrupted traces, one also needs to carefully consider the
set of actions appearing in the event log L but not in the model N: A = {a €
I|le L}\{4t)]|t e T} It may be that there are very rare events or events
that correspond to uninteresting actions deliberately not included in the model.
These events should be removed from L before replaying the event log on the
model.

After replaying the event log, we obtain the multiset of non-fitting traces L,,
The step of separating this multiset into the multiset of deviating traces L, and
the multiset of outlier traces L, is critical for repair. Figure 3 already illustrated
the trade-off between minimizing the distance to the original model and ensuring
conformance. For each deviation revealed by the alignments of log and model,
we need to decide whether the model is “wrong” and the log is “right” or the
model is “right” and the log is “wrong”. To support this step we propose three
approaches: frequency-based filtering, trace clustering, and manual inspection
using trace alignment.

For frequency-based filtering we can look (1) at the frequencies of non-
conforming traces, (2) at the frequencies of particular deviations, and (3) at the
frequencies of deviations in a particular state.

If most traces are frequent and there are just a few traces that are infrequent,
e.g., traces that are unique, then one may consider removing the infrequent ones
as their effect on conformance is minimal.

By computing alignments, we can replay any case in the model even if it
is deviating. The > symbols in the alignment show where problems occur. If
a problem is very infrequent, the log rather than the model may be repaired.
For example, if there are only few b moves on log (b,>>), one may repair this
by removing the corresponding b’s from the log. If there are only few s moves
on model (>, s), one may repair this by adding the corresponding moves to the
log. Note that by doing this Ly does not only contain a subset of the original
non-fitting traces, but also (partly) modified traces.

One can also consider the states in which according to the alignment there is
a problem. Later, we will show that it is easy to identify the severity of problems

13

in the different states. This information can be used to discard particular
deviations or not. Things that happen infrequently have a low impact on the
overall conformance; therefore, one may choose to discard these.

Another approach is to apply trace clustering to the multiset of non-fitting
traces L, [6, 7, 30]. This results in more homogenous groups of traces. Per
group one can decide to add the traces to Ly or L,. Particularly interesting is
the approach in [7] which creates a “rest cluster” of possible outliers.

Despite these automated approaches, one often needs to use domain knowledge
to further split the multiset of non-fitting traces L,, into Ly and L,. Fortunately,
this is facilitated by the trace alignment technique presented in [31]. The main
idea of trace alignment is to align traces for visual inspection showing events that
occur out of order. See [32] for a case study using trace alignment to identify
outliers.

All of the techniques mentioned are (partially) supported by existing plug-ins
in ProM. The plugin “Filter Log Using Simple Heuristics” allows to detect and
filter incomplete cases and outlier events; it was used in the case study of Sect. 6.
More advanced filtering techniques are available in plug-ins such as “ActiTrac”,
“Trace Alignment (with Guide Tree)”, “Filter Out Unmapped Event Classes”,
“Construct Log From Alignment”, and “Align Log to Model”.

In the remainder, we assume L’ to be given, i.e., outliers L, of L are removed.
If an event log is noisy and one includes also undesired traces L,, it makes no
sense to repair the model while enforcing a perfect fit as the resulting model will
be spaghetti-like and not similar to the original model.

4. Repairing Processes by Adding Subprocesses

In the following, we present a solution to model repair. We first sketch a
naive approach which completely repairs a model w.r.t. the quality dimension of
fitness but scores poorly in terms of precision. We then define a more advanced
approach that also caters for precision. Section 5 presents more refined repair
techniques that address simplicity and improve similarity to the original model.

4.1. Naive Solution to Model Repair — Fitness

Alignments give rise to a naive solution to the model repair problem that we
sketch in the following. It basically comprises to extend N with a 7-transition
that skips over a transition ¢ whenever there is a move on model (>>,¢), and
to extend N with a self-looping transition ¢ with label a whenever there is a
move on log (a,>). This extension has to be done for all traces and all moves
on log/model. The crucial part is to identify the locations of these extensions.

Figure 4 illustrates how the non-fitting log L = {acfced, abccfed} aligns to
the net N of Fig. 2. The nets below each alignment illustrate the differences
between log L of Fig. 4 and net N of Fig. 2. After replaying ac, the net is in
marking [p4, p3] and the log requires to replay f which is not enabled in the net.
Thus a log move (f,>>) is added. Similarly, c is not enabled at this marking
and log move (c,>>) is added. Then e should occur, which requires to move

14

a c f c > e > d
a C > > b e b d
[P2,p3] | [p4.p3] [P4.p5] | [p4.p3] | [p4.p5] | [P6]

a b c c f e > d
a b c > > e b d
[P2,p3] | [P2.p5] | [p4.P5] [P4.p3] | [p4.p5] | [P6]

after replaying abccf

Figure 4: Alignments of log L = {acfced, abccfed} to the net of Fig. 2.

the token from p3 to p5, i.e., a model move (>>,b). Correspondingly, the rest
of the alignment, and the second alignment is computed. The third line of the
alignment describes the marking that is reached in N by replaying this prefix of
the alignment on N.

Using this information, the extension w.r.t. a move on model (>>,t) is trivial:
we just have to create a new 7-labeled transition ¢* that has the same pre- and
post-places as t. For a log move (a,>>) the alignment tells in which marking
m of N action a should have occurred (the “enabling location” of this move).
In principle, adding an a-labeled transition ¢, that consumes from the marked
places of m and puts the tokens back immediately, repairs N w.r.t. to this move
on log. However, we improve the placement of ¢, by checking if two moves on log
(a,>) would overlap in their enabling locations. If this is the case, we only add
one a-labeled transition that consumes from and produces on this overlap only.

Figure 5(left) shows how model N of Fig. 2 would be repaired w.r.t. the
alignment of Fig. 4. The move on model (>, b) requires to repair N by adding
a 7 transition that allows to skip b as shown in Fig. 5. The move on log (c,>>)
occurs at two different locations {p4,p3} and {p4,p5} in the different traces.
They overlap on p4. Thus, we repair N w.r.t. (c,>>) by adding a c-labeled
transition that consumes from and produces on p4. Correspondingly for (f,>).
The extended model that is shown in Fig. 5(left) can replay log L of Fig. 4
without any problems.

15

Figure 5: Result of repairing the net of Fig. 2 w.r.t. the log of Fig. 5 by the naive approach
(left) and by adding subprocess (right).

4.2. Identify Subprocesses — Precision

The downside of the naive solution to model repair is that the repaired
model has low precision. For a log L where a best alignment contains only
few synchronous moves, i.e., N does not conform to L, many 7-transitions and
self-loops are added. We observed in experiments that often many self-loops
were added to N at the same location. In such a case, the resulting model
locally permits arbitrary sequences of previously non-replayable events, making
the model less precise w.r.t. log L. In the following, we turn this observation
into a structured approach to model repair that addresses precision and fitness
together.

Instead of just recording for individual actions a € ¥ their enabling locations
w.r.t. log moves, we now record enabling locations of sequences of log mowves.
Each maximal sequence of log moves (of the same alignment) that all occur at
the same location is a non-fitting subtrace. We group non-fitting subtraces at the
same location @ into a non-fitting sublog S at that location. We then discover
from S a subprocess Ng that can replay S by using a mining algorithm that
guarantees perfect fitness of Ng to S. We ensure that Ng has a unique start
transition and a unique end transition. We then add subprocess Ng to N and
let the start transition of Ng consumes from) and let the end transition of Ng
produce on @, i.e., the subprocess models a structured loop that starts and ends
at Q.1

Figure 5(right) illustrates this idea. The model depicted is the result of
repairing N of Fig. 2 by adding subprocesses as described by the alignments of
Fig. 4. We can identify two subtraces cf and fc that occur at the same sublocation
p4. Applying process discovery on the sublog {cf,fc} yields the subprocess at
the top right of Fig. 5(right) that puts c and f in parallel. The two grey-shaded
silent transitions indicate the start and end of this subprocess.

4.8. Formal Definitions

The formal definitions read as follows. For the remainder of this paper, let N
be a Petri net system, let L be a log. For each trace [€ L, assume an arbitrary

IThe term subprocess is here used in the sense of a part of the process that has a unique
entry point and a unique exit point. It should be read as a plain extension of the existing
process model, and not be confused with the idea of factoring out process parts into another
document or organizational entity.

16

but fixed best fitting alignment «(l) to be given. Let a(L) = {a(l) |l € L} be
the alignments of the traces in L to N.

Whenever an alignment «(l) has a log move (a;,>), the net N is in a
particular marking m;, which we call the location of the move.

Definition 6 (Location of a log move). Let @ = (a1,t1)...(an,t,) be an
alignment w.r.t. N = (P, T, F,mg, my,). For any move (a;,t;), let m; be the
marking of N that is reached by the occurrence sequence t; ...t;_1|7 of N. For
all 1 <i <, if (a;,t;) = (a;,>>) is a log move, then the location of (a;,>>) is
the set loc(a;,>>) = {p € P | m;(p) > 0} of places that are marked in m;.

For example in Fig. 4, loc(c,>>) = {p4,p3} in the first alignment and
loc(c,>) = {p4, p5} in the second alignment.

Any two consecutive log moves have the same location m as the marking m
of N does not change in a log move. We group these consecutive moves into a
subtrace at location m.

Definition 7 (Subtrace). A subtrace (8, Q) is a mazimal sequence § = (a;,>>)
... (a;1k,>) of consecutive log moves of « having the same location Q, i.e.,
loc(aj,>) = loc(a;,>) = Q,i < j <i+k, and no longer sequence of log moves
has this property.

We write B(L) for the set of all subtraces of all alignments a(L) of L to N.
To simplify notation, we write 8 = (8, Q) and loc(8) = @ when no confusion
can arise.

For example, in Fig. 5, fc is a subtrace of the first alignment at location
{p4,p3} and cf is a subtrace of the second alignment at location {p4,p5}. We
could repair the net by adding two subprocesses, one that can replay fc at
@1 = {p4,p3} and one that can replay cf at Q2 = {p4,p5}. However, we
could instead just add one subprocess that can replay fc and cf at location
Q1N Q2 = {p4}.

This observation gives rise to two notions. A sublocation of a subtrace (is a
subset of its location loc(3). A sublog is a set of subtraces; the location of the
sublog is the sublocation shared by all traces in the sublog, or any subset of it.

Definition 8 (Sublog). Let a(L) be an alignment. A non-empty set S C 3(L)
of subtraces together with a non-empty location @ C ﬂﬁes loc(B) is a sublog

(S,Q) of a(L).

Each sublog will yield a subprocess that is added to N. The way these
sublogs are organized will influence the quality of the repaired model. To ensure
fitness of the repaired model, each subtrace has to be in some sublog. A set
S ={(51,Q1),.-.,(Sn,Qn)} of sublogs is complete (w.r.t. B(L)) iff S;U...US,, =
B(L). A complete set S can, for instance, be constructed by putting any two
subtraces at the same location into the same sublog. We will see in Sect. 5.4
that one can use more refined methods for constructing S that also addresses
the simplicity of the repaired model.

17

We now have all notions to formally define how to repair model N w.r.t. log
L. For each sublog (S, @) discover a process model Ng and connect it to the
location @ in .

Definition 9 (Subprocess of a sublog). Let L be a log, let N be a Petri net, let
a(L) be an alignment of L to N, and let (S, Q) be a sublog of a(L).
Let ST = {start a1 ...ax end | (a1,>)...(ar,>) € S} be the sequences of
events described in S extended by a start event and an end event (start, end ¢ X).
Let M be a process discovery algorithm that returns for any log a fitting
model (i.e., a Petri net that can replay the log). Let Ng = M(S*). Then
(Ns, Q) is the subprocess of S.

The discovery algorithm M will produce transitions labeled with the actions
occurring in ST and a start transition #q,+ with label start and an end transition
teng With label end. In the following, we assume that *tges = 0 and tenq® = 0,
i.e., that start and end transitions have no pre- or post-places. In case M
produced pre- and post-places for start and end, these places can be safely
removed without changing that Ng can replay ST. When repairing N, we
connect tgpqr¢ and te,q to the location @ of the subprocess.

Algorithm 1 defines how to repair a Petri net N w.r.t. a log L by adding
subprocesses. The algorithm takes as input a complete set of sublogs S obtained
from an alignment «(L) of L to N; it returns the subprocess-repaired model of
N w.rt. S.

Algorithm 1 Subprocess-based repair

procedure REPAIRSUBPROCESS(net N, complete set of sublogs S)

N « N // create copy for repair
for all t € T/, 4(t) # 7 do

if exists model move (>>,t) in some subtrace in S then

add to N’ a new transition ¢, with *t, = *¢,¢,* =t*,0/(¢t,) =T

for all (S,Q) € S do

(Ng, Q) « the subprocess of (5, Q) according to Def. 9

startg, endg < the start and end transitions of Ng

add Ng to N’ // assume Ng and N’ are disjoint

for all p € Q do add arcs (p, starts), (endg,p) to N’

set ¢'(startg) := 7,0 (endg) :=T

return repaired net N’

Theorem 1. Let L be a log, let N be a Petri net. Let a(L) be the alignments
of the traces of L to N and S be a complete set of sublogs of a(L). Let N' be
a subprocess-repaired model of N w.r.t. S. Then each trace |l € L is a labeled
occurrence sequence of N', that is, N' can replay L.

Sketch. The theorem holds from the observation that each alignment o =
(a1,t1) ... (an,ty) € a(L) of L to N can be transformed into an alignment of L
to N’ having synchronous moves or model moves on invisible transitions only,
as follows.

18

Every move on model (>>,t;) of @ w.r.t. N is replaced by a model move
(>,t;>) w.r.t. N’ on the new invisible transition ¢; ., £(¢;) = 7 which allows
to skip over t;.

Every move on log (a, >>) w.r.t. N is part of a subtrace 8 = (a1,>) ... (ag,>)
of asublog (5, Q) € S. By adding the subprocess Ng at location @, the subtrace 3
is replaced by a sequence (>, starts)(ai,t1) ... (ak,tr) (>, endg) of synchronous
moves in the subprocess Ng. Moves (>, starts) and (>, endg) are harmless
because they are made silent by relabeling starts and endg with 7. O

This theorem concludes the basic techniques for repairing a process model
w.r.t. fitness to a given log. Observe that original model N is preserved entirely
as we only add new transitions and new subprocesses. By taking a best alignment
a(L) of L to N, one ensures that number of new 7-transitions and the number
of new subprocesses is minimal.

4.4. Optional subprocesses instead of loops — better precision

The quality of the subprocess-based repair can be improved in some cases.
Algorithm 1 adds for each sublog (5, Q) a subprocess Ng that consumes from
and produces on the same set () of places, i.e., the subprocess is a loop. If this
subprocess is entered in each trace of L only once, then Ng is also executed
exactly once. Thus, N could be repaired by inserting Ng in sequence (rather
than as a loop), by refining the places @ = {q,...,qx} to places {inq,...,ing}
and {outy, ..., outy} with

1. ®inj; = *gq;,in;* = {starts},j=1...,k, and
2. out;* =q;°*,%out; = {ends},j=1... k.

If Ng is entered at most once per case of L, we can additionally add a transition

tfkip with .(tfk:ip) = {iny,...,ing} and (tfkip). = {outy, ..., outy} which allows
to skip Ng.

A model repaired by adding Ng in an (optional) sequence has a higher
precision than the model repaired by adding Ng in a loop (Alg. 1). In the latter,
the model Ng can be executed an arbitrary number of times, in the former (at
most) once. However, this improvement for precision is only correct if there
is no other subprocess N§ with an overlapping location Q' NQ # 0, as our
repair technique does not discover orderings between different subprocesses at
overlapping locations.

5. Improving Repair

Section 4 introduced a basic technique for repairing a process model: it adds
a subprocess wherever a part of the log cannot be replayed on the model. The
resulting model N’ fits the log, and the use of subprocesses (as a loop or in
sequence) caters for the precision of N’. In this section, we present techniques
which specifically address simplicity of N’. We show techniques

1. for identifying loops in sublogs and repairing N by inserting a single
transition rather than adding a large subprocess, and

19

p3 p4 pé

a(l) = alblc|>[d|b|c|b|c]|d
alblclefd|[>[>[>|>]>

Figure 6: Model that shall be repaired w.r.t. the trace abcdbcbed; (1) is the corresponding
alignment.

2. for removing from N’ unused or rarely used parts (after loops and subpro-
cesses are added); both techniques are optional.

In addition, we show that simplicity of N’ can be improved by computing align-
ments and sublogs with favorable qualities; we present pre-processing techniques

1. for picking a specific alignment of log L to original model N that yields
less changes to N, and

2. for aligning, decomposing, and clustering subtraces into sublogs to improve
the structure of subprocesses in N’, and

3. how to pick a more specific location on where a subprocess or loop is added
to IV based on locations of subtraces.

These three techniques can be used to pre-process the input of any of the repair
techniques. Each of the pre-processing techniques can be applied on its own or
in combination with others in the given order. The complete algorithm for our
repair technique is given at the end of this section.

5.1. Identifying Loops

Up to now, we repaired N by adding subprocesses which can replay sublogs
of non-fitting events. This section and the next one, introduce two different
operations for repairing process models which address simplicity.

5.1.1. Observation: subprocesses cannot handle repeating behavior well

A loop of a process manifests itself in the log L in repetitive patterns. For
instance, the trace | = abcdbcbed has the repetitive pattern of events bed with
some events occasionally missing, e.g., event d in the second iteration. If the
original model IV can only replay a single occurrence of the pattern bed but
not several iterations of the pattern, then N has to be repaired. However, the
example of Figures 6 and 7 shows that the subprocess-based repair of Sect. 3 in
this case yield a counter-intuitive and unnecessarily complex model.

Aligning the trace [= abcdbcbed to the model N of Fig. 6 yields for instance
the alignment «(l). The first iteration of the pattern bed can still be replayed
on NNV, but the second and third iteration cannot and lead to the sublog bcbced.
Repairing N w.r.t. «(l) according to Sect. 4 results in the model shown in Fig. 7;

20

Figure 7: Sub-process based repair of the model of Fig. 2 w.r.t. the trace abcdbcbed.

loop back

Figure 8: Loop-based repair of the model of Fig. 2 w.r.t. the trace abcdbcbed.)

the subprocess added at place p7 allows to replay the two additional iterations
bc and bcd.

The model of Fig. 7 clearly has disadvantages: it has a rather complex struc-
ture, and there is no explicit loop that describes the three iterations bed, bc, bed.
Instead, different parts of the model describe the same behavior multiple times.

5.1.2. Idea: discover structured loops

A more favorable solution for repair would be the model shown in Fig. 8 that
defines a structured loop. The loop body is indicated by the grey-shaded area,
the “loop back” transition takes a token from the loop exit (place p7) back to
its entry (places p2, p3). This model can replay the trace [= abcdbcbed. In the
following, we present a technique that achieves this repair.

To repair a model N w.r.t. structured loops, we have to identify three things.
(1) We have to identify whether a trace has several iterations of a repetitive
pattern from which only the first iteration can be replayed in N and the others
cannot. In the model N, we have to identify (2) the part that can replay the first
iteration of the repetitive pattern, so that (3) by adding a “loop back” transition
also the second, third, ...iteration of the pattern can be replayed.

The challenge that we face is that not all iterations of the pattern are identical,
for instance in case of skipped events or alternative paths within the loop body.
This makes it difficult to identify the patterns that are repeated. Our solution
is to avoid finding the patterns explicitly, but rather take each subtrace [as a
hypothesis that “it could be an iteration of a loop”. We test the hypothesis by
searching for a loop body that, when extended by a loop back transition, can
replay §. If this loop body exists, the hypothesis is true and the identified loop
repairs N. If it does not exist, N cannot replay § through a loop and we use
the subprocess-based repair.

We illustrate the idea by an example; the algorithm is given afterwards. In

21

Fig. 6, the alignment «(l) yields the sublog ({bcbcd}, {p7}). From the activities
b, c,d and the loop exit p7, we identify the loop hypothesis consisting of all nodes
between places p2, p3 and p7, see the grey-shaded area in Fig. 8. When adding
a loop back transition from p7 to p2, p3, we can replay bcbed with model moves
(>>,e) and (>>,d). Thus, the hypothesis holds and we can add the loop back
transition and two 7-transitions to repair the model of Fig. 6 which results in
the model of Fig. 8.

There are a few more non-trivial aspects to finding loops which we discuss
and solve as we present the formal definitions and algorithms.

5.1.8. Algorithm for loop discovery
For a sublog (5, Q) that cannot be replayed in N we find a potential loop
body and test whether it is one, as follows.

1. The actions 3(S) in S are the activities of the potential loop body. The
location @) contains the places that were marked when any subtrace 8 € S
could not be replayed on N. If there is a loop, the location @ contains the
exit of the loop body. The loop body thus consists of all transitions labeled
with ¥(S) that precede places in Q). We search in N for the smallest
connected subnet Ng that contains these transitions and ends with Q. The
places of Ng that have no pre-transition are the loop entry. We complete
Ng to a loop by adding a loop back transition that consumes from the exit
Q@ and produces on the entry of the loop.

2. To test whether (S, @) describes loop iterations, we test whether the loop
Ng can replay S when there are tokens initially in @ (the loop exit). To
account for variations in loop iterations, e.g., skipped events, we compute
an alignment «(S) of S to Ng where costs log moves are set high relative
to costs for model moves (e.g., factor 100). If a(S) contains no log moves,
then Ng can replay the loop, that is, the hypothesis holds. We can repair
N by adding the identified loop back transition. If «(S) contains model
moves, corresponding 7-transitions have to be added to N as well as, see
Alg. 1.

Formal definitions. The loop discovery algorithm is given in Alg. 2. It extends
the given original model N = (P, T, F,{,mg, ms) with a loop back transition
for each sublog (S, Q) € S that indeed describes a loop. The algorithm builds
on some notions. Let distance(N,z,Q) denote the length of a shortest path
from node z to some node ¢ € @Q along the arcs F'. We define the subnet N[T"]
induced by a set T" C T of transitions as N[T"] = (P, T, F', ¢, my, m/;) where
P = UteT’(.t U t.), F = F|(P’><T’)U(T’><P’)7 €’ = €|P’UT’7 mg(p) =1 if there is
no arc (p,t) € F’ and my(p) = 0 otherwise, and m’;(p) = 1 if there is no arc
(t,p) € F' and m’(p) = 0 otherwise. In N[I"], places without pre-transition
(post-transition) are in the initial (final) marking.

The net Njop returned by Alg. 2 is repaired w.r.t. log moves in S that can
be attributed to iterative behavior. IV;,,, is not repaired w.r.t. model moves and
w.r.t. non-iterative behavior. These repairs can be achieved by computing an

22

Algorithm 2 Repairing a model by discovering and adding loops

procedure ADDLOOPS(original model N, sublogs S, cost function k)

Nigop < N // copy of N
for all (S,Q) € S do
Ts + 0 // transitions of the loop body

for each log move (a,>) in a subtrace in S do
choose t, € Ts with {(t,) = a and distance(N,t,, Q) minimal
Ts <+ TgU {ta}

for each t € T on a path in N from t; € Tg to t; € Ts do

Ts <+ Ts U{t} // add all transitions in between
Ng + N[Ts] // copy of potential loop body
entryg < {p € Ps | mo,s(p) > 0}
exits < {p € Ps | my s(p) > 0} // test the loop body

add a new transition loop g with *loopg = entryg, loopy = ezitg to Ng
a <+ alignment(S, Ng, k)
if a contains no log move then

add transition loopg with *loopg = entryg, loops = exitg t0 Nigop

return Ny,

alignment ogop(L) of L to Nioep and then applying the subprocess-based repair.
The alignment 0, (L) contains less deviations than the original alignment a(L)
of L to N, because some deviations are already repaired in Nj,.,. The full
procedure is given in Sect. 5.6.

Iteration preserving alignments. Algorithm 2 will be ineffective if loop iterations
are scattered over different sublogs; it works best if many loop iterations end
up in the same subtrace in some sublog. This can be influenced by finding a
particular alignment «(l) that contains log moves “as late as possible”.
A negative example is the following alignment of trace abcdbcbed to the model
of Fig. 6, o/ (l) = a‘b‘ C ‘ d ‘ b ‘c‘>>‘ b ‘ c ‘d
alb[>[>[>]c|e|[>]>]d
has the same cost as «(l) of Fig. 6, but differs in its representation of loop
iterations. Our approach would find a loop body for subtrace (bc, {p5,p6}) of
a/(1), but not for (cdb, {p2, p4}), because transition d lies after the loop exit
{p2, p4}. Alignment o'(l) violates the notion of having log moves “as late as
possible” by the log move (c,>>) that occurs before the synchronous move (c,c).
For discovering loops, we prefer «(l) of Fig. 6 over o/(I). In «(l) the first
loop iteration is completely described by synchronous moves and all subsequent
iterations are grouped into one subtrace. An alignment of this kind is iteration
preserving, which we characterize as follows:

. Alignment o/(1)

1. For any synchronous move (a,t) that is preceded by a sequence (a1,>>)...
(ag,>>) of log moves, no log move (a;,>>) could have matched ¢, i.e., a # a;
forall 1 <i<k.

2. A model move (>>,t) is either preceded by a synchronous move or by
another model move, i.e., log moves are put last.

23

The ProM plugin that implements the technique of Sect. 2.4 for finding a best
alignment uses a heuristics that returns iteration preserving alignments [10, 11].
However, it might be that the first iteration can only be completed when a large
number of model moves is used. In that case, the alignment we are looking
for would not be a best alignment as additional model moves increase the cost.
In such a situation, the cost for model moves can be set to 0 (the same as
synchronous moves), allowing to replay all events of the first iteration at no
extra cost.

5.2. Removing unused and infrequent parts

So far, we repaired N by adding new transitions, subprocesses, and loops
that allow to replay all traces of log L. However, N may also contain transitions
for which there is no event in L. These superfluous transitions, so far, remain in
the repaired model N'; if superfluous transitions were removed, we would repair
N also in terms of precision w.r.t. L and simplicity.

The idea for removing unused parts is simple. We align the log L to the
repaired model N'. The alignment contains only synchronous moves and model
moves on transitions of N’. We count for each transition ¢ of N’ how often it
participates in a move. If that number is 0, then ¢ is not used, and we remove t.
In the same way, unused places can be removed. See Alg. 3 for the corresponding
procedure.

Algorithm 3 Removing unused or rarely used nodes
procedure REMOVEINFREQUENT(model N, log L, cost fct. s, thresh. k)
a <+ alignment(L, N, k)
for all t € Ty do used(t) <— number of times ¢ occurs in a move in «
for all p € Py do used(p) < 3., used(t) + mo(p)
for all z € Ty U Py where used(z) < k do
remove x and all adjacent arcs from N

return N

The threshold parameter allows to remove also nodes that are rarely used.
Removing them will impair fitness but improve simplicity. Thus, a user may
seek a favorable spot in the model repair spectrum, as discussed in Sect. 3.

5.8. Picking specific alignments for repair

The algorithms introduced so far take alignments and sublogs as input to
repair a process model N w.r.t. a log L. In the next three sections, we investigate
which properties of an alignment or a sublog yield more favorable repairs, and
how to obtain alignments and sublogs with such properties.

Uniform deviations yield simpler repairs. The basis for repairing N w.r.t. L
is an alignment of N to L that highlights were L and N deviate. So far, we
considered an alignment « that shows the smallest number of deviations between
N and L, as it is computed by the cost-based approach of Sect. 2.4. However,

24

Figure 9: The alignment a2 has more uniform deviations compared to o1. Repairing the net
of Fig. 2 w.r.t. az yields a simpler model (right) than the repair w.r.t. a1 (left).

the simplicity of the repaired model N’ does not only depend on the number of
deviations, but also on their uniformity. The more uniform the deviations are
the more likely it is they can be repaired in the same way, for instance, with the
same transition or subprocess.

Figure 9 shows two alignments 1 and as of the trace [= aced to the net of
Fig. 2. Both alignments have the same number of deviations, but as is more
uniform as both deviations are a b-move on model (b,>>), whereas a; has one
log move (>>, e) and one model move (b, >). Repairing the net of Fig. 2 w.r.t.
a1 or o yields the respective two nets shown in Fig. 9. The deviations in axs
can both be repaired by the same 7-labeled transition, whereas the repair for
aq needs an additional e-labeled transition; the net in Fig. 9(right) is simpler
and more similar to the original net of Fig. 2. Next, we present a technique that
helps picking alignments with more uniform deviations, such as «s.

Compute a global cost function. The best alignment of L to IV is defined w.r.t.
a cost function k; we can adjust x to obtain a particular alignment. The idea is
to find a cost function «* in which a log move that occurs very rarely has high
costs (and hence is avoided), and a log move that occurs very frequently has low
costs (and hence is preferred); correspondingly for model moves. For instance in
Fig. 9, when action b has lower costs than event e, then alignment ay has less
cost than alignment ;.

Such a cost function £* can be found by looking globally on all deviations
between N and L, as follows. First compute an alignment « with a given cost
function k; K can be uniform or already take other aspects into account. Count
for each action a € ¥ and each transition ¢t € T the number of respective log
moves and model moves in o. The most frequent move yields the “most efficient”
repair whereas all other moves yield “less efficient” repairs. We obtain «* by
scaling the original costs in x with respect to how frequent a move occurs: the
most frequent move keeps its costs, the cost of any other move is scaled up more
the less frequent it is. Algorithm 4 gives the explicit definition to compute x*.

Computing a best alignment w.r.t. £* will prefer moves with lower costs
(i.e., which yield a more efficient repair across the entire log L) and avoid moves
with higher costs (i.e., which yield a more expensive repair w.r.t. entire L). The
above procedure could be iterated, i.e., compute k** = GLOBALCOST(L, N, k*).
However, in experiments we found the alignments returned for k* and £** to be

25

Algorithm 4 Computing a global cost function

procedure GLOBALCOST(log L, net N, cost function &)
a < alignment(N, L, k)
for all a € ¥ do dev(a) < number of log moves (a,>) in «
for all t € T do dev(t) < number of model moves (>>,t) in «

devMazx + maxgexyur dev(x) // most efficient repair
K*(z) + k(z) - d;:%;f, forallz e XUT

return global cost function «*

identical.

5.4. Aligning, decomposing, and clustering subtraces into sublogs

The repair technique of Sect. 3 extracts sublogs from an alignment of L to
N and adds a subprocess to N for each sublog. The simplicity of the repaired
model depends on the number of subprocesses added (fewer means simpler), and
how simple each subprocess is. So far, we only gave a naive procedure to extract
sublogs: group subtraces at the same location. In the following, we investigate
the forces that influence simplicity of subprocesses and propose a procedure for
extracting sublogs that aims at a simple repaired model.

5.4.1. Simplicity of subprocesses

A subprocess Ng added to N will be simpler if the sublog (5, Q) from which
Ng is derived contains many similar traces and no outliers (or noise). The
number of subprocesses in turn can be reduced by grouping as many traces as
possible into the same sublog. This observation reveals two forces that affect
simplicity: (1) any two subtraces with overlapping locations should be in the
same sublog, and (2) dissimilar traces should not be in the same sublog.

We address these two forces with the following approach. First partition the
subtraces G(L) into sets Suby, ..., Suby of similar subtraces, so that traces in
different sets are dissimilar. Then subtraces that are in the same set Sub; and
have overlapping locations are grouped into the same sublog, which may yield
several sublogs depending on the overlap. We confirmed in experiments that
repairing N w.r.t. the sublogs obtained in this way will yield a simpler structure
of the repaired process model. We present both steps in the following.

5.4.2. Partitioning subtraces based on similarity

Figure 10 illustrates the problem of partitioning the subtraces §(L) into sets
of similar subtraces by an example. The subtraces to the left are very diverse. If
we group all of them into a single sublog, we could discover the subprocess Ny,
which has a rather complex structure. If we decided to put each subtrace into a
different sublog, we would obtain simple subprocesses, but these contain certain
structures multiple times. For instance, the sequence cdef would be represented
twice. Simplicity can be achieved by partitioning the subtraces into sets of
mutually similar traces.

26

abcdefghi abcdefghi abghf abghf cdef

abghf cdef cdef ab cdef
ggef decompose gﬂ?f decompose gplf Subs : ghf, ghi
e gg gg Sub, : cdef, cdef, cd, dc
ab ab .
discover ap - Subs:ab, ab

+ discover

Figure 10: Decomposing and aligning sublogs to obtain multiple, simpler subprocesses.

However, there is no obvious partition of the subtraces shown in Fig. 10.
Subtrace cdef is similar to cd and to a part of abcdefghi, but cd is rather different
from abcdefghi. Also abghf and cdef are similar to a part of abcdefghi, but cdef
and abghf are not similar to each other. In any case, we either end up with
sublogs of dissimilar traces (yielding a complex subprocess), or with many small
sublogs (yielding duplicated structures). In the following, we propose a technique
that avoids this trade-off.

Idea: decompose subtraces. Partitioning the subtraces of Fig. 10 fails, because
some traces are only similar to a part of another trace. We avoid this problem
by decomposing each subtrace into parts that are similar to other subtraces.

The algorithmic idea is as follows. We call two subtraces similar if they share
50% of their actions (regardless of the ordering). A long subtrace 8 decomposes
into shorter subtraces 8 = Bprefiz 3’ Bsuiz Whenever 5’ is also a subtrace found
by the alignment (and S and 8’ themselves are dissimilar). Decomposition starts
with the longest subtrace 8 and the longest part 3’. This way, we decompose
into the longest similar subtraces that we can find. When no subtrace can be
decomposed anymore, any two subtraces are either clearly similar or clearly
dissimilar. Formal definitions are given below.

Figure 10 illustrates this procedure. In the first step, abcdefghi decomposes
into ab, cdef, ghi because of cdef. From the resulting set of subtraces, abghf
decomposes into ab and ghf because of ab. In the resulting set, no subtrace
can be decomposed anymore, e.g., trace cdef is not decomposed into cd and
ef because cd and cdef are similar (they share at least 50% of the actions).

27

Grouping pairwise similar traces yields the three sets Subq, Subs, Subs shown
in Fig. 10(right). From these, we can discover the subprocesses Ny, N3, and
N3 which have a simpler structure; only N, and N3 overlap on transition f.
Note that by adding Ny, N3, and N3 to the same location (their start and end
transitions are connected to the same places), the 3 subprocesses together replay
the subtraces of Fig. 10(left).

Formal definitions. Let X(8) denote the actions occurring in a subtrace .

Subtraces (81, Q1) and (B2, Q2) are similar, written (51, Q1) ~ (82, Q2), iff they
share at least 50% of the actions, i.e., W > (0.5 and W > 0.5.
Let = be the transitive closure of ~, i.e., & is the equivalence relation induced
by ~. Let Sub be a set of subtraces; ~ partitions Sub into its equivalence
classes Suby, ..., Suby where for each i = 1,...,1, (81,Q1), (52, Q2) € Sub; iff
(81,Q1) =~ (B2,Q2). Finally, we write Sub[n] for the set of subtraces in Sub that
have length n. Algorithm 5 shows the complete algorithm.

Algorithm 5 Decomposing and aligning subtraces
procedure ALIGNSUBTRACES(subtraces Sub)
Nmax < length of longest subtrace in Sub
for n = npax...1 do
for all (8,Q) € Subln] do
choose [yf1 82 = 8 where 1 € Sublk], k < n maximal, 8 % 5
if By31P2 exist then
Sub « Sub\ {(8,Q)}
Sub + SubU{(A1,Q), (B, Q). (55, Q)}

Sub < Sub \ Sub[0] // remove empty subtraces
Suby, ..., Suby < equivalence classes of Sub wrt =~
return Subq, ..., Suby

5.4.8. Grouping subtraces into sublogs

Algorithm ALIGNSUBTRACES returns sets Subq, . . ., Suby of similar subtraces.
By Def. 8, a set Sub; of subtraces is only a log if their joint location is non-empty.
Otherwise we split Sub; based on the locations of its subtraces.

As before, locations of subtraces may overlap in a way that some subtraces
could be placed in more than one sublog. Consider for example the subtraces
(abe, {p,q}), (abd,{q,r}), (abe,{q,r}), (abf, {p,s}). Their joint locations is empty;
when grouping the traces into sublogs, we have to choose whether (abc, {p,q})
should be in one log with (abd, {q,r}), (abe, {q,r}) (locations overlap on q or in
one log with (abf, {p,s}) (overlap on p).

In experiments, we found that the repaired model is more structured when
we consider the “frequency” of a place w.r.t. a set Sub of subtraces. Whenever
a subtrace has a place p in its location, the process should have been able
to replay that trace when there was a token on p. The more often p occurs,
the more frequent it is w.r.t. behavior that has to be repaired. We interpret
a frequent place p as more important for the placement of a subprocess. In

28

contrast, a less frequent place just happened to be marked when a subtrace had
to be executed; it is less significant on where to add a subprocess to repair a
model. Thus, we propose to group subtraces into sublogs based on the frequency
of the places in their locations, starting with the most frequent places. In
our example above, place q would be the most frequent one, and we would
group (abc, {p,q}), (abd, {q,r}), (abe,{q,r}) into one sublog with location {q}
and (abf, {p,s}) into another sublog with location {p,s}.

Formal definitions. For a set Sub of subtraces and a place p € P, let Sub[p] denote
the subtraces of Sub having p in their location, Sublp] = {(8,Q) € Sub | p € Q}.
Algorithm 6 groups subtraces Sub into sublogs.

Algorithm 6 Grouping subtraces to sublogs

procedure GROUPINTOSUBLOGS(subtraces Sub)

S« 10

while Sub # () do
choose place p € P with |Sub[p]| is maximal
S« Sub[p] // all subtraces at place p
Q + Npeg loc(B) // at least p € Q
S« SU{(5Q)}
Sub < Sub \ Sub[p]

return S

5.4.4. Complete algorithm

Algorithm 7 shows the complete procedure which extracts from the set of
all subtraces (L), a complete set S = GROUPINTOALIGNEDSUBLOGS(S(L))
of sublogs, where each sublog contains only similar traces. We noticed in
experiments that aligned sublogs yield simpler subprocesses, and that we were
able to to identify more loops from aligned sublogs than from unaligned ones.

Algorithm 7 Aligning subtraces to sublogs
procedure GROUPINTOALIGNEDSUBLOGS(subtraces Sub)
S+ 10
Subq, ..., Suby + ALIGNSUBTRACES(Sub)
fori=1,...,k do
S + SU GROUPINTOSUBLOGS(Sub;)

return S

5.5. Improving the placement of a subprocess

A sublog (5, Q) returned by Alg. 7 may still have a large location Q. The
location @ could be reduced further if additional information from the entire
original log L is taken into account. The idea is that a place p € @ is more
significant for a subtrace in S if it was marked last before that subtrace had to
be executed. The subset of places in) that were marked last the most often are

29

considered as most significant; all other less significant places are removed from

Q.

Formal definitions. Recall from Sect. 4.3 that each subtrace 8 € S was extracted
from an alignment «(l) of a trace | € L to the model N. Let (a,t) be the
synchronous move that precedes 8 in a(l) = ... (a,t)(>,t})...(>,t,)6. .., re.,
we ignore the model moves (>>,t}). The places marked last before § are the
post-places t* in N; we write last(3, N) := t*. Given sublog (S, @), the number
of times a place p € () was marked last before a subtrace g € S is defined as
last(p,S,N) = |{B € S | p € last(8,N)}|. The higher last(p, S, N), the more
significant is p for S. Algorithm 8 reduces the location of each sublog to the most
significant places. Note that the location of a sublog (S, @) remains unchanged
if last(B, N)NQ =0 as last(p, S, N) =0 for all p.

Algorithm 8 Picking relevant locations of sublogs
procedure PICKRELEVANTLOCATIONS(net N, sublogs S)
S+
for all (S,Q) € S do
S« S U{(S,{p € Q| last(p,S,N) is maximal})}

return S’

We found in experiments that by this technique, subprocesses introduced
during repair are less likely to have overlapping locations.

5.6. Complete model repair procedure

We experimentally evaluated the effect each of the techniques introduced so
far. Based on the insights gained there (see Sect. 6), we designed the extended
repair Algorithm 9. It takes as input the original model N and the log L. In
addition, the user can provide a cost function x to specify how severe deviations
w.r.t. particular transitions or events are; a uniform cost function with costs 1
can be used as well. Finally, threshold & will be used when removing infrequently
used parts from N.

The algorithm has three major steps: (1) First repair the model for loops
using ADDLOOPS (Alg. 9), (2) then for subprocesses and skipped activities using
REPAIRSUBPROCESS (Alg. 1), and (3) finally remove infrequent nodes (Alg. 3).
The algorithm can be configured in various ways:

1. Steps (1) and (3) can be omitted.

2. Repairing for loops is most effective if the cost function ke, used for
computing the alignment uses 0 costs for model moves and high costs for
log moves; though other cost functions are possible.

3. Subprocess-based repair yields less subprocesses when the cost function
kgt is computed by GLOBALCOST (Alg. 4); though one could also omit
GLOBALCOST and set xp; < & for the given cost function x.

4. In steps (1) and (2), sublogs are extracted from the respective alignment
by GROUPINTOALIGNEDSUBLOGS (Alg. 7); sublogs can also be extracted
directly without aligning them by S +— GROUPINTOSUBLOGS(S(L)).

30

Algorithm 9 Extended procedure for model repair
procedure REPAIREXTENDED(model N, log L, cost function «, threshold k)

// (1) Repair for loops
Kloop <— cost function with V¢ € Ny : k(t) = 0,Va € (L) : k(e) = 100
Qloop (L) alignment(N, L, Kioop)
Bloop (L) < all subtraces of agop(L)
Sioop — GROUPINTOALIGNEDSUBLOGS(Bi00p (L))
Sioop + PICKRELEVANTLOCATIONS(N, Sjo0p)
Nivop <= ADDLOOPS(N, L, Kio0p)

// (2) Repair for subprocesses and skipped events
Kfit <= GLOBALCOST(Npop, L, k)

a(L) < alignment(N, L, kpy)

B(L) «+ all subtraces of a(L)

S + GROUPINTOALIGNEDSUBLOGS(S(L))

S < PICKRELEVANTLOCATIONS(Njo0p, S)

Npiy < REPAIRSUBPROCESS(Noop, L, Kfir)

// (3) Remove infrequent
Nrepaired < REMOVEINFREQUENT(Nfy, L, gz, k)
return N,cpgired

5. Procedure PICKRELEVANTLOCATIONS (Alg. 8) to pick more specific loca-
tions for loops and subprocesses can be omitted.

Experimental results show that the complete procedure yields best results as
we discuss in the next section.

6. Experimental Evaluation

The technique for model repair presented in this paper is implemented
in the Process Mining Toolkit ProM 6 in the package Uma, available from
http://www.promtools.org/prom6/. We briefly discuss some implementation
details and then present an experimental evaluation of our techniques.

6.1. Implementation in ProM

The ProM package Uma provides a Repair Model plugin that implements
Alg. 9. This plugin calls three separate plugins Repair Model (find loops),
Repair Model (find subprocesses), and Repair Model (remove unused parts) which
implement the three main repair steps, respectively. Each of these repair plugins
takes as input a Petri net N, a log L, and a best-fitting alignment «(L) of L
to N. The alignment (L) can be computed in ProM 6 using the Conformance
Checker of [9-11]. Additionally, we provide a plugin Align Log And Model for
Repair (global costs) which computes an alignment using a global cost function
(Alg. 4). Each of the repair plugins has an option to align sublogs of non-fitting
events (Alg. 7) and to pick optimal sublocations (Alg. 8).

31

Table 1: Deviations of 10 logs from Dutch municipalities to a reference model and properties
of manually repaired models.

log deviations manual repair
moves on per add similarity-
traces length model log case | P| |T| distance
M1 434 1-51 3327 310 1-26
M2 286 1-72 1885 323 1-41
M3 481 2-82 3079 1058 1-49
M4 324 1-37 2667 192 2-21
M5 328 2-43 3107 342 2-25
M1/ 249 24-40 681 229 1-12 5 20 0.068
M2/ 180 23-70 516 240 1-41 6 27 0.095
M3/ 222 22-82 465 598 1-49 44 82 0.158
M4 239 15-37 1216 180 2-17 23 43 0.117
VI 328 13-43 1574 280 2-16 15 36 0.111

In an earlier version of this paper [18], sublogs were obtained by grouping
subtraces that share the same location in a greedy way (pick sublogs with the
largest overlap of places first).

In Repair Model (find subprocesses), subprocesses are discovered from sublogs
using the ILP miner [8] which guarantees to return a model that can replay the
sublog. The returned model is then simplified according to [29] and added to N
as a subprocess as defined in Alg. 1.

6.2. Ezxperiment Data

We validated our implementation on real-life logs from a process that is
shared by five Dutch municipalities. Figure 1(left) shows the reference base
model that is used in several municipalities. However, each municipality runs the
process differently as demanded by the “couleur locale”. As a result, the process
observed in each municipality substantially deviates from the base model.

We obtained 5 raw logs (M1-M5) from the municipalities’ information systems.
From these we created filtered logs (M1/-M5/) by removing all cases that clearly
should not fit the base model, for instance because they lacked the start of the
process or were incomplete (see Sect. 3 for the discussion). Table 1 shows the
properties of these 10 logs (over 44 different actions) discussed in the following.
The table lists the number of traces, minimum and maximum length, and the
properties of a best alignment of the log to the model of Fig. 1(left) as the total
number of model moves, number of log moves and the minimum and maximum
number of deviations (log move or model move) per case. None of the traces
could be replayed on the base model, in some cases deviations were severe.

6.3. Manual Repair

To obtain a “gold standard” regarding model repair the reference model
was repaired manually by a modeling expert. For repair, deviations between
filtered log and model in the alignment were identified and classified based on
background information about the process. We observed that

32

1. activities were executed in reality in a different order than described by
the process model,

2. groups of activities were executed repeatedly where the process model only
allows for a single execution,

3. some activities had been skipped in some cases, and

4. some activities had never been executed.

Based on this classification, the model was repaired:

1. Where a different execution order was required, the ordering of activities
was adjusted, for instance by reversing activity order, making activities
parallel, or swapping activities and gateways in the process.

2. When a group of activities had been executed repeatedly, the model was
repaired by either implementing a loop that allows for repeated execution of
these activities, or by inserting a new block of activities. The latter repair
was conducted in situations when repeated activities occurred interleaved
with the main process flow or much later than their original occurrence in
the process.

3. Optional activities were skipped by adding a 7-transition, preferably skip-
ping over a sequence of optional activities where applicable.

4. Activities never executed were removed from the model.

After applying all repairs, the repaired model was checked for conformance, and
additional changes were applied until the repaired model conformed to the given
log. Figure 12(right) shows the manually repaired model for log M2/, the changes
are highlighted: one subprocess consisting of 10 activities was added, a group of
2 activities had to be moved to a different branch, one loop was implemented,
and several activities had to be made optional. Table 1 shows the differences of
the manually repaired models for each filtered log to the reference model which
had 59 places, 68 transitions, and 152 arcs. Log M3/ required by far the largest
changes in particular in adding new subprocesses and loops. Logs M4/ and
M5/ required many repairs for optional activities. We also measured the graph
similarity distance [33] of each manually repaired model to the reference model.
The similarity distance roughly indicates the fraction of the original model that
has to be changed to obtain the repaired/rediscovered model, i.e., 0.0 means
identical models. The manual repairs increased the distance to the reference
model between .068 and .158.

The time to manually repair one model was between 1hr for M1/, around
3hrs for M3, M4f and M5 each, and 5hrs for M2/ for which it was hardest
to derive repair actions from the found deviations.

6.4. Automatic Repair

To evaluate the techniques for automatically repairing models, we conducted
a series of experiments. In the first experiment, we repaired the reference model
for each of the 10 logs using the subprocess-based repair of Alg. 1 followed
by removing unused nodes with Alg. 3 based on an alignment of uniform cost
function. The other experiments investigated the influence of the improvements

33

4

=1

Figure 11: Result of repairing Fig. 1(left) w.r.t. M1 (left) and M2/ (right).

in model repair that can be achieved by the variants proposed in Sect. 5. The
quality of the automatically repaired models is measured in terms of graph
similarity distances to the reference model and to the manually repaired models.

6.4.1. Subprocess-based repair

Applying subprocess-based repair (Alg. 1 and 3) on the base model of
Fig. 1(left) and the filtered log M1/ yields the model of Fig. 1(middle). Re-
pairing the base model w.r.t. the raw log M1 results in the model shown in
Fig. 11(left). Repairing the base model w.r.t. the filtered log M2/ yields the
model of Fig. 11(right). In each case, model repair requires only several seconds;
a best alignment (needed for repair) could be obtained in about a minute per
log. We checked all resulting models for their capability to replay the respective
log and could confirm complete fitness for all models.

Moreover, we could re-identify the original model as a sub-structure of
the repaired model, making it easy to understand the made repairs in the
context of the original model. Table 2 shows for each log the number of added
subprocesses, the average and maximal number of transitions per subprocess,
and the total number of added and of removed transitions in the entire process.
We can see that in the worst case, M3, the number of transitions in the model
has more than tripled. Nevertheless, this large number of changes is nicely
structured in subprocesses: between 2 and 10 subprocesses were added per
log, the largest subprocess had 37 transitions, the average subprocess had 6-13
transitions. We identified alternatives, concurrent actions, and loops in the
different subprocesses. Yet, simplification [29] ensured a simple structure in
all subprocesses, i.e., graph complexity between 1.0 and 2.0. Model repair also

34

Table 2: Results on subprocess-based automatic repairs for the logs from Table 1.

subprocesses change to original discover

added |T| total |7 sim-dist. sim-dist.

avg. max. add. rem. to orig. to man. to orig.

M1 7 7 21 69 3 0.144 0.476
M2 5 10 23 65 3 0.147 0.486
M3 10 13 37 151 3 0.199 0.542
M4 8 7 13 71 4 0.139 0.541
M5 6 9 24 60 3 0.143 0.540
M1/ 2 6 9 25 4 0.074 .094 0.473
M2/ 2 12 21 37 5 0.103 131 0.539
M3/ 7 10 26 87 5 0.164 176 0.543
M4/ 6 7 13 60 4 0.124 145 0.542
M5 4 9 23 51 3 0.111 146 0.541

allowed 25%-30% of the original transitions to be skipped by new 7-transitions;
only few original transitions could be removed entirely.

To measure the effectiveness of automatic model repair, we computed the
graph similarity distance [33] between automatically repaired model and original
model, between automatically repaired model and manually repaired model,
and between a completely rediscovered model and the original model. The
rediscovered model was obtained with the ILP miner [8] (ensuring fitness) and
subsequently simplified by the technique of [29] using the same settings as for
subprocess simplification.

We observed that every automatically repaired model is significantly more
similar to the reference model (.074-.199) than the rediscovered models are
to the reference model (.473-.543). This indicates that model repair indeed
takes the original model structure by far more into account than model discov-
ery. The numbers also match the observations one can make when comparing
Fig. 1(middle) to Fig. 1(right). The manually repaired models are slightly closer
to the reference model in terms of similarity distance (compare Tables 1 and 2),
e.g., .094 for automatic repair and .068 for manual repair for M1/. However, the
automatic repairs have a different characteristic than the manual repairs as the
distance between automatically and manually repaired models is larger than the
difference between automatically repaired model and reference model. Filtering
logs prior to repair, as discussed in Sect. 3, positively affects the similarity of
the repaired model to the original model, i.e., compare similarity of repaired
Mi and Mi/ to original. Also, the effect of filtering is stronger when repairing a
model than when rediscovering a model, i.e., rediscovered models all had similar
distance to the original, regardless of whether the log was filtered.

6.4.2. Improvements by repair variants

We conducted 7 additional experiments varying on (1) whether to repair for
structured loops (Alg. 2 in Sect. 5.1), (2) whether to align sublogs (Alg. 7 in
Sect. 5.4), (3) whether to compute a global cost function for alignment (Alg. 4 in
Sect. 5.3), and (4) whether or not to remove unused nodes from the model (Alg. 3

35

%

Figure 12: Result of repairing Fig. 1(left) w.r.t. M2/ by aligning sublogs (left), discovering
loops (middle), by manual repair (right).

in Sect. 5.2). In all 7 experiments, we grouped sublogs according to Alg. 6 and
picked locations according to Alg. 8. Figure 12 compares the result of repairing
Fig. 1(left) w.r.t. log M2/ by using aligned sublogs Fig. 12(left) and by discovering
loops (middle) with the manually repaired model (right). Here, aligning sublogs
splits the large sublog that leads to the large subprocess of Fig. 11(right) into
three smaller sublogs, which yield three additional subprocesses in Fig. 12(left).
In Fig. 12(middle), the largest sublog was identified as a loop.

The main effects we observed in all logs are the following.

1. Loop detection is effective. Except for log M1/, we could identify and

repair loops for each of the logs, ranging between 1 and 4 loops. The
smallest loop bodies had 1 transition, the largest loop bodies had between
19 and 23 transitions (for M2, M4, M5, and their filtered variants). The
discovered loops were structured (i.e., single entry and single exit) and
contained sequences of activities, concurrent activities, and alternative
branches; we did not observe structured loops nested insider other loops.
We could confirm that the discovered loop bodies coincide with the loops
constructed in the manually repaired models.

For each identified loop, the repaired model had 1 subprocess of the size
of the loop body less compared to repairs without loop detection. Thus,
a repair with loop discovery added between 27% and 89% of nodes less
compared to a repair without loops.

These subprocesses were loop-free except for loops of length 1 or 2, which
are introduced by the ILP Miner in case of optional activities. The notable

36

exception was M37, where no large loop could be identified. Here, the
repair revealed a rather complex subprocess having unstructured loops
(i.e., multiple entries and exits).

This indicates that our technique was capable of detecting all structured
loops in the given data set, but cannot handle unstructured loops.

. Most loops were found when the cost function Ko, of Alg. 9 used costs 0
for model moves. By such a cost function, the alignment can capture loop
iterations that contain skipped events. However, we observed a tradeoff.
For log M4 and M4/, some loop iterations contained a large number of
skipped actions w.r.t. the loop body. The repair had to add more 7-
transitions to the loop body than the corresponding subprocess would have
had.

. Without aligning sublogs, no loops could be identified. We observed that
without aligning sublogs, many of the subtraces did contain complete loop
iterations, but these were preceded or interleaved with other events. In
these cases, Alg. 2 cannot verify the loop hypothesis. When sublogs were
aligned, loop iterations were separated from other events and loops could
be found.

. Aligning sublogs also leads to smaller subprocesses that are localized better
in the repaired model. The number of subprocesses increased between 2
and 4 for filtered logs and between 5 and 9 for unfiltered logs (log M3
constitutes an extreme case with 23 very small subprocesses).

If loop detection was not used, average subprocess size reduced by 14%-54%
(avg. -32%) for filtered logs and by 31%-67% (avg. -42%) for unfiltered
logs. If loop detection was used (which always happens in Alg. 9 before
aligning sublogs for subprocess discovery), average subprocess size reduced
by 8%-54% (aveg. -24%) for filtered logs and by 20%-62% (avg. -39%)
for unfiltered logs. In particular sublogs which contain iterative behavior
contribute to the separation and reduction of sublogs. As sublogs with
iterative behavior are not present after loop detection, the reduction effect
is slightly less.

. Computing a global cost function allows to reduce the size of subprocesses
that cannot be implemented as loops. In these, we observed a reduction
between 17% and 52% for the average subprocess size in filtered logs; in
unfiltered logs we observed reductions of up 33% but some subprocesses
also increased in size by 1 or 2 transitions.

. Most superfluous nodes (between 4% and 12% of all nodes) could be found
when the alignment was based on a global cost function. No superfluous
nodes were found when aligning sublogs of an alignment with a uniform
cost function.

Altogether, the results suggest to repair models by the following procedure:
first detect loops based on aligned sublogs with a specific cost function that
ignores model moves, then add subprocesses based on aligned sublogs that uses
a global cost function for alignments, and finally remove superfluous nodes.
Algorithm 9 was designed based on these insights. For this algorithm, graph

37

Table 3: Model quality after direct and after iterative repairs with Alg. 9

sim.-dist M1/ M2/ M3/ M4/ M5/
direct repair vs. original 0.070 0.073 0.176 0.111 0.099
repeated vs. original 0.070 0.080 0.143 0.148 0.195
repeated vs. direct repair 0.0 0.021 0.144 0.119 0.166

similarity distance to the original model improves by 3% to 31% compared to a
plain subprocess-based repair (compare first line of Tab. 3 to Tab. 2).

6.5. Repeated Repairs

Finally, we evaluated how often our automatic repair technique can be
applied without requiring human refactoring of the repaired model. For this,
we consecutively repaired the reference model first for log M1/ and then the
resulting model for M2/ and so on. In each iteration i, we measured the similarity
of the repaired model to the model obtained by direct automatic repair w.r.t.
log Mi/ and to the original process model. Table 3 shows the results.

We observed that the repeatedly repaired model has a similar distance to
the original model as the directly repaired model. Occasionally, the repeatedly
repaired model would be even more similar to the original model (M3/). However,
after a certain number of iterations, the repeatedly repaired model collects
additional repair artifacts, making it less similar to the original than the directly
repaired model.

Based on these insights repeated repairs can in principle be applied, depending
on the use case. If one is interested in understanding differences to the original
model, then the directly repaired model will have a higher quality. In uses cases
such as process evolution, the original model will be outdated after the first
repair, and the repaired model serves as reference. The results of Tab. 3 suggest
that the repaired model should be improved, e.g., in a manual refactoring step,
to maintain its quality before the next evolution step is performed.

7. Related Work

The model repair technique presented in this paper largely relates to three
research streams: conformance checking of models, iterative process discovery,
and changing models to reach a particular aim.

Various conformance checking techniques that relate a given model to an
event log have been developed in the past. Their main aim is to quantify fitness,
i.e., how much the model can replay the log, and if possible to highlight deviations
where possible [9-12, 16]. The more recent technique of [9-11] uses alignments
to relate log traces to model executions which is a prerequisite for the repair
approach presented in this paper. Besides fitness, other metrics [4, 9, 13-15, 17|
(precision, generalization, and simplicity) are used to describe how good a model
represents reality. Precision and generalization are currently considered in our
approach only as a side-effect and are not a guiding factor for model repair.
Incorporating these measures into model repair is future work. Simplicity is

38

considered in our approach in the sense that changes should be as tractable as
possible, which we could validate experimentally.

Iterative process discovery techniques solve a problem that is very similar to
model repair. The problem is to continuously improve an existing (discovered)
process model based on observed behavior. There are 2 basic types of iterative
process discovery which both take an existing model N and a log L of most recent
process executions as input. The first type, such as the technique proposed in [34],
discovers from L a model Ny, describing the executions L, and then merges N
and Ny, into a new model N’. The second type of incremental discovery extracts
the ordering relations Ry between activities in N and the ordering relations Ry,
between events in L and merges them into updated ordering relations R’ from
which then the incrementally updated process model N’ is derived. In [35] R’
is derived from the ordering relations with highest support and confidence in
Ry and Ry. In [36], R’ are the relations of Ry superseded by the relations Ry,
of the log. In the context of the model repair problem, the approach in [34]
discovering Ny, from L may result in a too complex model to merge into NNV,
as the model in Fig. 1(right) shows. The same problem occurs for the set of
all ordering relations Ry, of L in [36]. In contrast, the approach of [35] cannot
guarantee a fitting model as support and confidence of original model and log
are balanced, possibly neglecting ordering relations of the log. Our approach of
separating non-fitting subtraces from fitting traces and repairing the model for
non-fitting traces avoids these problems.?

A different approach to enforcing similarity of repaired model to original
model could be model transformation incorporating an edit distance. The work
in [37] describes similarity of process model variants based on edit distance.
Another approach to model repair is presented in [38] to find for a given model
a most similar sound model (using local mutations). The work in [39] considers
repairing incorrect service models based on an edit distance. These approaches
do not take the behavior in reality into account. Other approaches to adjust a
model to reality, adapt the model at runtime [40, 41], i.e., an individual model
is created for each process execution. This paper repairs a model for multiple
past executions recorded in a log; it extends on an earlier version by a number
of improvements of the model repair techniques including better structured
subprocesses and loop detection. The approach of [29, 42] uses observed behavior
to structurally simplify a given model obtained in process discovery.

8. Conclusion

This paper addressed, for the first time, the problem of repairing a process
model w.r.t. a given log. We proposed a repair technique that preserves the
original model structure and introduces subprocesses into the model to permit
to replay the given log on the repaired model. We validated our technique on

2Unfortunately, the discussed techniques were not available in tool prototypes for experi-
mental evaluation.

39

real-life event logs and models, and showed that the approach is effective. The
repaired model allows to understand how the original model deviated and had
to be changed to achieve conformance to the log.

Our proposed technique of model repair covers the entire problem space of
model repair between confirming conformance and complete rediscovery. In
case of complete fitness, the model is not changed at all. In case of an entirely
unfitting model (no synchronous move), the old model is effectively replaced by
a rediscovered model. In case of partial fitness, only the non-fitting parts are
rediscovered. This allows to apply our technique also in situations where the
given model is understood as a partial model (created by hand) that is then
completed using process discovery on available logs.

The technique can be configured. The cost-function influences the best-fitting
alignment found; discovering structured loops, grouping of traces into sublogs,
and identifying sublocations for inserting new subprocesses allows for various
solutions. Any process discovery algorithm can be used to discover subprocesses;
the concrete choice depends on the concrete conformance notion addressed.

In our future work we would like to consider other conformance metrics such
as generalization and precision. Moreover, in our current approach we abstract
from extra logging information such as the resource executing or initiating the
activity and the timestamp of the event. We would like to incorporate this
information when repairing the model. For example, resource information can
give valuable clues for repair. Finally, we would like to address process model
repair also for other perspectives such as the data perspective. Misconformances
on data can already be discovered in an alignment-based approach [20].

Acknowledgements. We thank M. Kunze and R.M. Dijkman for providing us with
an implementation of the graph similarity distance and the anonymous reviewers for
their fruitful suggestions. The research leading to these results has received funding
from the European Community’s Seventh Framework Programme FP7/2007-2013 under
grant agreement n°® 257593 (ACSI).

References

[1] W. M. P. van der Aalst, Process Mining: Discovery, Conformance and
Enhancement of Business Processes, Springer, 2011.

[2] IEEE Task Force on Process Mining, Process Mining Manifesto, in: BPM
Workshops, Vol. 99 of LNBIP, Springer, 2012, pp. 169-194.

[3] W. M. P. van der Aalst, A. Weijters, L. Maruster, Workflow Mining: Discov-
ering Process Models from Event Logs, IEEE Transactions on Knowledge
and Data Engineering 16 (9) (2004) 1128-1142.

[4] S. Goedertier, D. Martens, J. Vanthienen, B. Baesens, Robust Process
Discovery with Artificial Negative Events, Journal of Machine Learning
Research 10 (2009) 1305-1340.

40

[5]

[13]

[14]

[15]

[16]

A. Medeiros, A. Weijters, W. M. P. van der Aalst, Genetic Process Mining;:
An Experimental Evaluation, Data Mining and Knowledge Discovery 14 (2)
(2007) 245-304.

G. Greco, A. Guzzo, L. Pontieri, D. Sacca, Discovering Expressive Process
Models by Clustering Log Traces, IEEE Transaction on Knowledge and
Data Engineering 18 (8) (2006) 1010-1027.

J. D. Weerdt, M. D. Backer, J. Vanthienen, B. Baesens, Leveraging Process
Discovery With Trace Clustering and Text Mining for Intelligent Analysis
of Incident Management Processes, in: IEEE Congress on Evolutionary
Computation (CEC 2012), IEEE Computer Society, 2012, pp. 1-8.

J. van der Werf, B. van Dongen, C. Hurkens, A. Serebrenik, Process Discov-
ery using Integer Linear Programming, Fundamenta Informaticae 94 (2010)
387—-412.

W. M. P. van der Aalst, A. Adriansyah, B. van Dongen, Replaying History
on Process Models for Conformance Checking and Performance Analysis,
WIREs Data Mining and Knowledge Discovery 2 (2) (2012) 182-192.

A. Adriansyah, B. van Dongen, W. M. P. van der Aalst, Conformance Check-
ing using Cost-Based Fitness Analysis, in: EDOC 2011, IEEE Computer
Society, 2011, pp. 55—64.

A. Adriansyah, B. F. van Dongen, W. M. P. van der Aalst, Towards Robust
Conformance Checking, in: BPM 2010 Workshops, Vol. 66 of LNBIP, 2011,
pp. 122-133.

T. Calders, C. Guenther, M. Pechenizkiy, A. Rozinat, Using Minimum
Description Length for Process Mining, in: SAC 2009, ACM Press, 2009,
pp. 1451-1455.

J. E. Cook, A. L. Wolf, Software Process Validation: Quantitatively Mea-
suring the Correspondence of a Process to a Model, ACM Transactions on
Software Engineering and Methodology 8 (2) (1999) 147-176.

J. Munoz-Gama, J. Carmona, A Fresh Look at Precision in Process Confor-
mance, in: BPM 2010, Vol. 6336 of LNCS, Springer, 2010, pp. 211-226.

J. Munoz-Gama, J. Carmona, Enhancing Precision in Process Conformance:
Stability, Confidence and Severity, in: CIDM 2011, IEEE, Paris, France,
2011, pp. 184-191.

A. Rozinat, W. M. P. van der Aalst, Conformance Checking of Processes
Based on Monitoring Real Behavior, Information Systems 33 (1) (2008)
64-95.

J. D. Weerdt, M. D. Backer, J. Vanthienen, B. Baesens, A Robust F-measure
for Evaluating Discovered Process Models, in: CIDM 2011, IEEE, 2011, pp.
148-155.

41

[18]

[29]

D. Fahland, W. M. P. van der Aalst, Repairing process models to reflect
reality, in: BPM 2012, Vol. 7481 of Lecture Notes in Computer Science,
Springer, 2012, pp. 229-245.

A. Rozinat, W. M. P. van der Aalst, Decision Mining in ProM, in: Interna-
tional Conference on Business Process Management (BPM 2006), Vol. 4102
of LNCS, Springer, 2006, pp. 420-425.

M. D. Leoni, W. M. P. van der Aalst, B. van Dongen, Data- and Resource-
Aware Conformance Checking of Business Processes, in: Business Informa-
tion Systems (BIS 2012), Vol. 117 of LNBIP, Springer, 2012, pp. 48-59.

J. Buijs, B. van Dongen, W. M. P. van der Aalst, On the Role of Fitness,
Precision, Generalization and Simplicity in Process Discovery, in: OTM
Federated Conferences, 20th International Conference on Cooperative In-
formation Systems (CooplS 2012), Vol. 7565 of LNCS, Springer, 2012, pp.
305-322.

M. Song, W. M. P. van der Aalst, Towards Comprehensive Support for
Organizational Mining, Decision Support Systems 46 (1) (2008) 300-317.

C. Glinther, A. Rozinat, W. M. P. van der Aalst, Activity Mining by Global
Trace Segmentation, in: BPM 2009 Workshops, Proceedings of the Fifth
Workshop on Business Process Intelligence (BPI'09), Vol. 43 of LNBIP,
Springer, 2010, pp. 128-139.

R. P. J. C. Bose, W. M. P. van der Aalst, Abstractions in Process Mining:
A Taxonomy of Patterns, in: Business Process Management (BPM 2009),
Vol. 5701 of LNCS, Springer, 2009, pp. 159-175.

A. Rozinat, I. de Jong, C. Gilinther, W. M. P. van der Aalst, Process Mining
Applied to the Test Process of Wafer Scanners in ASML, IEEE Transactions
on Systems, Man and Cybernetics, Part C 39 (4) (2009) 474-479.

V. Levenshtein, Binary Codes Capable of Correcting Deletions, Insertions,
and Reversals, Soviet Physics-Doklady 10 (8) (1966) 707-710.

R. P. J. C. Bose, W. M. P. van der Aalst, Trace Alignment in Process Mining:
Opportunities for Process Diagnostics, in: Business Process Management
(BPM 2010), Vol. 6336 of LNCS, Springer, 2010, pp. 227-242.

A. Adriansyah, J. Munoz-Gama, J. Carmona, B. Dongen, W. M. P. van der
Aalst, Alignment Based Precision Checking, in: Workshop on Business
Process Intelligence (BPI 2012), Vol. 132 of LNBIP, Springer, 2012, pp.
137-149.

D. Fahland, W. M. Aalst, Simplifying Discovered Process Models in a
Controlled Manner, Information Systems.
URL http://dx.doi.org/10.1016/j.is.2012.07.004

42

[30]

[38]

[39]

R. P. J. C. Bose, W. M. P. van der Aalst, Trace Clustering Based on
Conserved Patterns: Towards Achieving Better Process Models, in: BPM
2009 Workshops, Proceedings of the Fifth Workshop on Business Process
Intelligence (BPT’09), Vol. 43 of LNBIP, Springer, 2010, pp. 170-181.

R. P. J. C. Bose, W. M. P. van der Aalst, Process diagnostics using trace
alignment: Opportunities, issues, and challenges, Inf. Syst. 37 (2) (2012)
117-141.

R. P. J. C. Bose, W. M. P. van der Aalst, Analysis of Patient Treatment
Procedures, in: BPM Workshops’11, Vol. 99 of LNBIP, 2011, pp. 165-166.

R. M. Dijkman, M. Dumas, L. Garcia-Banuelos, Graph Matching Algorithms
for Business Process Model Similarity Search, in: BPM, Vol. 5701 of LNCS,
2009, pp. 48-63.

E. Kindler, V. Rubin, , W. Schifer, Incremental Workflow Mining based on
Document Versioning Information, in: Unifying the Software Process Spec-
trum (SPW 2005), Revised Selected Papers, Vol. 3840 of LNCS, Springer,
2005, pp. 387-301.

A. Kalsing, G. S. do Nascimento, C. Iochpe, L. H. Thom, An Incremental
Process Mining Approach to Extract Knowledge from Legacy Systems, in:
EDOC’2010, IEEE, 2010, pp. 79-88.

W. Sun, T. Li, W. Peng, T. Sun, Incremental workflow mining with optional
patterns and its application to production printing process, International
Journal of Intelligent Control and Systems 12 (1) (2007) 45-55.

C. Li, M. Reichert, A. Wombacher, Discovering Reference Models by Mining
Process Variants Using a Heuristic Approach, in: BPM 2009, Vol. 5701 of
LNCS, Springer, 2009, pp. 344-362.

M. Gambini, M. L. Rosa, S. Migliorini, A. H. M. ter Hofstede, Automated
Error Correction of Business Process Models, in: BPM 2011, Vol. 6896 of
LNCS, Springer, 2011, pp. 148-165.

N. Lohmann, Correcting Deadlocking Service Choreographies Using a
Simulation-Based Graph Edit Distance, in: BPM 2008, Vol. 5240 of LNCS,
Springer, 2008, pp. 132-147.

S. W. Sadiq, W. Sadiq, M. E. Orlowska, Pockets of flexibility in workflow
specification, in: ER’2001, Vol. 2224 of LNCS, 2001, pp. 513-526.

M. Reichert, P. Dadam, ADEPTflex-Supporting Dynamic Changes of Work-
flows Without Losing Control, JIIS 10 (2) (1998) 93-129.

D. Fahland, W. M. P. van der Aalst, Simplifying Mined Process Models: An
Approach Based on Unfoldings, in: Business Process Management (BPM
2011), Vol. 6896 of LNCS, Springer, 2011, pp. 362-378.

43

