
Service Interaction:
Patterns, Formalization, and Analysis

Wil M. P. van der Aalst1, Arjan J. Mooij1, Christian Stahl1, and
Karsten Wolf2

1 Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{W.M.P.v.d.Aalst, A.J.Mooij, C.Stahl}@tue.nl

2 Universität Rostock, Institut für Informatik
18051 Rostock, Germany

Karsten.Wolf@uni-rostock.de

Abstract. As systems become more service oriented and processes in-
creasingly cross organizational boundaries, interaction becomes more im-
portant. New technologies support the development of such systems.
However, the paradigm shift towards service orientation, requires a fun-
damentally different way of looking at processes. This survey aims to
provide some foundational notions related to service interaction. A set
of service interaction patterns is given to illustrate the challenges in this
domain. Moreover, key results are given for three of these challenges: (1)
How to expose a service?, (2) How to replace and refine services?, and (3)
How to generate service adapters? These challenges will be addressed in
a Petri net setting. However, the results extend to other languages used
in this domain.

Keywords: Service Orientation, Service Choreography, Open Nets, Ver-
ification, Service Interaction Patterns

1 Introduction

Information technology has changed business processes within and between en-
terprises. Traditionally, information technology was mainly used to support in-
dividual tasks (“type a letter”) and to store information. However, today’s busi-
ness processes and their information systems are intertwined. Processes heavily
depend on information systems and information systems are driven by the pro-
cesses they support [1]. In the last decade, information systems have become
“process aware”, i.e., processes are taken as the starting point [1].

At the same time, there is an increasing acceptance of Service-Oriented Ar-
chitectures (SOA) as a paradigm for integrating software applications within
and across organizational boundaries [2]. XML-based standards like SOAP and

activity

channelport port
interface

service definition service definition

service definition

interface

channel
activity

service choreography

message

Fig. 1. An illustration showing the main terms used to describe services.

WSDL facilitate the realization of such loosely coupled architectures. Interest-
ingly, SOA and associated technologies have blurred the classical distinction be-
tween intra-organizational processes and inter-organizational processes. Whether
work is subcontracted to an internal service or an external service, is no longer
relevant from a technological point of view.

However, the importance of interaction is increasing as more and more mono-
lithic systems are broken down into smaller services. The importance of inter-
action has been stressed by many authors [3–8]. Moreover, interaction is also
considered a first-class citizen in various industry standards. For example, the
Web Services Business Process Execution Language (BPEL) has primitive ac-
tivities such as invoke (invoking an operation on a web service), receive (wait-
ing for a message from an external source), and reply (replying to an external
source) [9]. Moreover, the pick construct that can be used for race conditions
based on external triggers is clearly inspired by the needs of service interaction.

Foundations In this paper, we focus on the foundations of service interaction.
We will not review the industry standards and associated tools. Instead we focus
on fundamental concepts that are independent of a particular implementation
language.

We first present some of the terms we will be using. A service has a definition.
This definition describes the behavior and the interface of the service. A service
can be instantiated. An instance corresponds to an execution of a service, and
hence it can execute activities, and receive and send messages. Activities are
the atomic units of work in a service and are specified in the service definition.
The interface of a service consists of a set of ports. A pair of ports can be
connected using a channel, thus enabling the exchange of messages. Services can
be composed by connecting the interfaces. We use the term service choreography
to refer to a set of fully-connected service definitions. Figure 1 illustrates these
terms.

In Sect. 2 we categorize some recurring service interactions in terms of a set
of service interaction patterns. Inspired by the Workflow Patterns Initiative (cf.
www.workflowpatterns.com), in particular the control-flow patterns [10] and
the set of interaction patterns [3] presented by Barros et al., we use a patterns-

accept

cook

collect

p6

p7

p8

p5

place

eat

pay

p2

p3

p4

p1

order

food

money

order

money

food

(a) Two services: a guest service GS1

and a friendly restaurant service RS1

place accept

cook

collect

p6

p7

p8

p5

p2

p3

p4

p1

order

food

money

order

money

food
eat

pay

(b) Two services: a guest service GS1

and an unfriendly restaurant service RS2

Fig. 2. Two pairs of services: GS1 ⊕ RS1 and GS1 ⊕ RS2.

based approach [10, 3] to introduce the foundational concepts and challenges of
service interaction in a language and tool independent manner.

In Sect. 3 we introduce open nets [11] as a basic tool to explain and formalize
services. Open nets are a refinement of Petri nets [12–14] with interface places
for communication and designated initial and final markings. Open nets can
be seen as a generalization of workflow nets [15], extended with communication
and a more relaxed net structure. A service definition is modeled as an open net.
Ports are modeled as interface places. Service definitions can be composed by
merging interface places into channel places. These channel places are internal
to the composed service. Messages correspond to tokens passed from one service
to another via interface places. A service choreography is the result of composing
a set of open nets such that all interface places become internal.

We define service composition in terms of open nets. The composition of ser-
vices may lead to all kinds of (behavioral) problems, e.g., deadlocks, livelocks,
inability to terminate, etc. Two or more services are compatible if their com-
position “behaves well”, but there exist several notions of compatibility in the
literature. Based on a particular compatibility notion, one can define controlla-
bility, i.e., “Does a service have a compatible service?”.

Examples Let us look at some examples of open nets representing very simple
“toy services”. Figure 2(a) shows two service definitions. The composition of
these two service definitions can be achieved by merging equally labeled interface
places (depicted on the frame). Each of the service definitions corresponds to an
open net and in the composition the interface places are fused. The open net
on the left (GS 1) represents a guest that first places an order, eats the food,
and finally pays. The three activities of this service, i.e., place, eat, and pay,
are modeled in terms of transitions. These activities are connected to the other
service via ports and channels. In our open-net representation these have been

collect

get drunk

cook

accept

p6

p7

p8

p5

leave

place

p2

p3

p4

p1

pay

eat

order

food

money

order

money

food

(a) Two incompatible services GS2

and RS3

collect

accept

p5

p6

get drunk

cook

p7

p8

pay

leave

place

p2

p3

p4

p1

eat

order

food

money

song

order

money

food

song

(b) Two compatible services GS3 and
RS4

Fig. 3. Another two pairs of services: GS2 ⊕ RS3 and GS3 ⊕ RS4.

mapped onto the places order, food, and money. In this toy example, real objects
are passed via the connecting places (e.g., food). In the context of web services,
of course only messages are exchanged via such places. The open net on the right-
hand side of Fig. 2(a) (RS 1) models the other service that consist of activities
accept, cook, and collect. This is the “friendly restaurant service” RS 1, which
can be seen as the obvious counterpart of GS 1. The composition of GS 1 and
RS 1, denoted by GS 1⊕RS 1, has only one possible execution trace: place, accept,
cook, eat, pay, and collect. It seems obvious that the two services are compatible,
even without having a precise definition of compatibility in mind.

Consider Fig. 2(b) modeling two similar services consisting of the same activ-
ities. However, the restaurant service now is less friendly and requires the guest
to pay before preparing the food (i.e., collect should occur before cook). This
“unfriendly restaurant service” is named RS 2. The composition GS 1 ⊕ RS 2 al-
ways runs into a deadlock, i.e., after executing place and accept both services are
blocked waiting for one another. Clearly these two services are not compatible.

To illustrate the complexity and intricate subtleties of service interaction,
consider Fig. 3(a). This time the guest may leave without eating and paying
for the food. Moreover, the cook is an alcoholic and may get drunk instead
of cooking the food. The resulting service composition GS 2 ⊕ RS 3 clearly has
problems. It may be the case that the customer leaves while the food has been
or will be delivered. One may wonder which service would be compatible with
RS 3, as it is unclear for the outside whether the food will be delivered or not.
We will come back to this question in Sect. 3.

Figure 3(b) shows improved versions of the “potentially leaving guest service”
and the “drunk cook restaurant service”: GS 3 and RS 4. In the new service
choreography the cook starts singing Irish folk songs when he gets drunk. As a
result, the customer knows when to leave. The composition GS 3⊕RS 4 has only
two possible execution traces: (1) the original scenario: place, accept, cook, eat,

pay, and collect, and (2) an added scenario: place, accept, get drunk, and leave.
Hence these two services are compatible.

Challenges In the second part of the paper, we discuss three main challenges
of service interaction in terms of open nets.

Exposing services (Sect. 4). In order to find compatible pairs of services,
services need to know each other (to some degree). Hence services need to be
“exposed” to cooperate in a meaningful way. For example, the guest should know
that he should leave when the cooks starts singing Irish folk songs. One com-
mon approach is where a service shows its own specification or implementation.
The drawback of this approach is that the environment starts using short-lived
particularities, or that sensitive information is shown without reason. Another,
less common, approach is to describe the class of compatible services. The chal-
lenge is to characterize a possibly infinite set of services in a compact manner.
Operating guidelines are a way of specifying the class of services a service can
work with, without exposing irrelevant or sensitive information.

Replacing and refining services (Sect. 5). One of the advantages of using
an SOA is that things can be changed more easily, i.e., one service may be
replaced by another service, or an unavailable service is replaced by several
simpler services. However, all of these changes may cause various errors that
break the service choreography. The challenge is to provide rules for replacing
and refining services while guaranteeing forward/backward compatibility. Note
for example that RS 3 in Fig. 3(a) can be replaced by RS 1 in Fig. 2(a), but not
the other way around. How to capture this in a generic rule?

Integrating services using adapters (Sect. 6). In reality, existing services need
to be composed to achieve a specific goal. However, services are often not compat-
ible. This triggers many questions, e.g., how to repair a service, how to diagnose
problems, etc. In Sect. 6 we focus on the challenge of adapter synthesis, i.e., the
(semi-)automatic generation of “glue logic” that makes incompatible services
compatible while achieving a given goal. For example, suppose that GS 4 is an
anorexic guest that just wants to order and pay without actually eating. It is
easy to make an adapter service AS that throws away the food such that the
service choreography GS 4 ⊕AS ⊕ RS 1 functions without any problems.

After discussing these challenges and providing an overview of the known
results for these problems, we present tool support for these methods in Sect. 7.
Finally, Sect. 8 concludes the paper.

2 Service Interaction Patterns

Before formalizing service definitions and addressing the various challenges in
this domain, we provide some examples of service interaction patterns. The goal
is not to summarize the existing patterns or to present new ones. Instead vari-
ous service interaction patterns are presented informally using a notation close
to open nets. Since we do not aim to describe the patterns in any detail, we
do not use the typical patterns format describing various aspects of a pattern

(e.g., description, examples, forces, motivation, overview, context, implementa-
tion, issues, and solutions) like in [10, 3, 16–19]. Instead, we just show a figure
and provide a brief description for each pattern.

2.1 Workflow Patterns Initiative

The use of patterns is very appealing for identifying functionality in a sys-
tem/language independent manner. The most well-known patterns collection in
the IT domain is the set of design patterns documented by Gamma, Helm, John-
son, and Vlissides [16]. This collection describes a set of problems and solutions
frequently encountered in object-oriented software design. This triggered many
patterns initiatives in the IT field, including the Workflow Patterns Initiative.
However, the idea to use a patterns-based approach originates from the work
of the architect Christopher Alexander. In [20], he provides rules and diagrams
describing methods for constructing buildings. The goal of the patterns docu-
mented by Alexander was to provide generic solutions for recurrent problems in
architectural design.

The work described in this section is part of the Workflow Patterns Initiative
(cf. www.workflowpatterns.com). This initiative is a joint effort of Eindhoven
University of Technology and Queensland University of Technology which started
in the late nineties. The aim of this initiative is to provide a conceptual basis
for process technology. In particular, the research provides a thorough exami-
nation of the various perspectives (control flow, data, resource, and exception
handling) that need to be supported by a workflow language or a business pro-
cess modeling language. The results can be used for examining the suitability
of a particular process language or process-aware information system, assessing
relative strengths and weaknesses of various approaches to process specification,
implementing certain business requirements in a particular system, and as a
basis for language and tool development.

Originally the workflow patterns focussed exclusively on the control-flow per-
spective [10]. The initial set of 20 patterns was later extended to a set of more
than 40 control-flow patterns [21]. In parallel, patterns were identified for the re-
source perspective [18], for the data perspective [19], and for exception handling
[22]. Especially the control-flow patterns have had a huge impact on the selection
of systems in practice and the definition of new standards. For example stan-
dardization efforts related to BPEL, XPDL, BPMN, etc. have been influenced
by these patterns.

In the context of the Workflow Patterns Initiative, several collections for
service interaction patterns have been collected. In [3], Barros, Dumas, and
Ter Hofstede document such patterns and divide them into several groups:
single-transmission bilateral interaction patterns (elementary interactions where
a party sends/receives a message, and as a result expects/sends a reply), single-
transmission non-routed patterns (also dealing with multi-lateral interactions),
multi-transmission interaction patterns (a party sends/receives more than one
message to/from the same logical party), and routed interaction patterns (in-
volving complex routing of messages through the network). These patterns were

(a) SIP-1 Send pattern (b) SIP-2 Pre-Blocking
Send pattern

block

send

p

c1

c2

c3

(c) SIP-3 Post-Blocking
Send pattern

Fig. 4. Patterns related to sending a message.

described in an informal manner. In [4] some of these patterns are formalized
using both π-calculus and Petri nets. A more systematic approach for the identi-
fication of service interaction patterns was conducted in the PhD thesis of Mulyar
[17]. She identified five pattern families: multi-party multi-message request-reply
conversation [6], renewable subscription, message correlation, message media-
tion, and bipartite conversation correlation. Using a generative approach, more
than 1,500 service interaction patterns are documented in [17]. While the above
service interaction patterns have been developed in the context of the Workflow
Patterns Initiative, other relevant patterns have been identified in related do-
mains. A notable example is the collection of enterprise integration patterns by
Hophe and Woolf [5].

2.2 Basic Service Interaction Patterns

First, we describe the basic service interaction patterns. These patterns abstract
from correlation, i.e., at this stage we do not worry about routing a message to
a specific service or service instance.

The first pattern is the SIP-1 Send pattern. The basic idea is shown in
Fig. 4(a). Note that in this open net fragment, transition send represents an
activity with precondition c1 and postcondition c2, both modeled by a place.
Place p represents an output port. The dashed line separates the interface from
the rest of the service definition. In Fig. 2(a) and the other examples in the
introduction, this pattern was used multiple times, e.g., to place an order or to
pay money. Pattern SIP-2 Pre-Blocking Send shown in Fig. 4(b) is a variant of
the same idea. However, now the sender blocks if the previously sent message
was not yet consumed. This is modeled by a so-called inhibitor arc between block
and p, i.e., block can only be executed if p is empty. Pattern SIP-3 Post-Blocking
Send is another variant. Now the thread in the sender service blocks until the
message sent is consumed, cf. Fig. 4(c). After sending the message, transition
block waits until the message is removed from output port p. Note that SIP-2
and SIP-3 can be combined, i.e., the sender blocks before and after sending (if
necessary).

(a) SIP-4 Receive pattern (b) SIP-5 Lossy Receive pattern

Fig. 5. Patterns related to receiving a message.

Figure 5 shows two basic patterns to receive messages. Pattern SIP-4 Receive
is the straightforward receipt of messages. The receiver blocks until the message
arrives. However, the message may arrive when the receiving service is not ex-
pecting it. In this scenario, the message waits until the receiver is ready, i.e., the
message is queued in the channel connected to place p. If this is not possible, the
message may get lost as shown in Fig. 5(b). This is pattern SIP-5 Lossy Receive.
Note that transition remove has an inhibitor arc connected to the input place c1
of receive. Hence, it can only be executed if receive is not enabled. If receive has
multiple places, more remove transitions are needed (one for every input place).
These transitions may be considered as part of the channel.

Figure 6(a) shows pattern SIP-6 Concurrent Send and Fig. 6(b) shows pat-
tern SIP-7 Concurrent Receive. SIP-6 describes the pattern where a service can
send two messages in any order: one via p1 and one via p2. SIP-7 is the log-
ical counterpart and here the receiver can receive two messages in any order.
Note that SIP-6 and SIP-7 can be combined with services that receive and send
sequentially, i.e., from an interaction point these are quite “robust” unlike the
choice patterns described next.

Figure 7 shows three choice patterns: SIP-8 Sending Choice, SIP-9 Receiving
Choice, and SIP-10 Internal Choice. SIP-8 describes the situation where the
choice is made within the service and communicated to the environment. Note
that other services may be able to see which internal path is taken, e.g., a message
via p1 reveals that send1 is executed. This pattern is used in Fig. 3(b) where the

(a) SIP-6 Concurrent Send pattern (b) SIP-7 Concurrent Receive pattern

Fig. 6. Patterns related to the concurrent sending or receiving of messages.

(a) SIP-8 Sending
Choice pattern

(b) SIP-9 Receiving Choice
pattern

(c) SIP-10 Internal Choice
pattern

Fig. 7. Patterns related to choices in the presence or absence of communication.

restaurant service communicates the choice to “cook” or “get drunk” by sending
the food or singing Irish folk songs. SIP-9 shown in Fig. 7(b) models the pattern
where the choice is influenced by the environment, i.e., the environment forces
the service to take one path or another. This pattern is used in Fig. 3(b) by the
guest service. Pattern SIP-10 describes a third variant where the choice is not
enforced by the environment nor communicated (cf. Fig. 7(c)).

Figure 8 shows two patterns where a choice is followed by a subsequent
message exchange depending on the choice. SIP-11 Sending Choice Receiving
Follow-Up shown in Fig. 8(a) corresponds to the scenario where the service
makes a choice (SIP-8) followed by the receipt of a particular message depend-
ing on the initial choice. Hence, the environment is expected to send a message
via p3 if it received a message via p1 and it is expected to send a message via
p4 if it received a message via p2. This is indicated by the dotted curves in
Fig. 8(a). Figure 8(b) shows the symmetrical case, i.e., pattern SIP-12 Receiv-
ing Choice Sending Follow-Up. In this pattern the environment takes the lead
and the service follows, e.g., when receiving a message via p1, the service re-
sponds by sending a message via p3. Not shown are the patterns SIP-13 Sending
Choice Sending Follow-Up, SIP-14 Receiving Choice Receiving Follow-Up, and
SIP-15 Internal Choice Sending Follow-Up. However, given their names and the
two earlier examples, their meaning is obvious. We do not consider situations

(a) SIP-11 Sending Choice Receiv-
ing Follow-Up pattern

(b) SIP-12 Receiving Choice Send-
ing Follow-Up pattern

Fig. 8. Choice with a follow-up patterns.

(a) AP-1 Internal Choice Receiving
Follow-Up anti-pattern

(b) Another variant of the anti-
pattern

Fig. 9. Two examples showing that “choices that matter” need to be communicated.

where the follow-up is an internal step, because this would not really be a follow-
up related to the choice.

Figure 9(a) shows a so-called anti-pattern: AP-1 Internal Choice Receiving
Follow-Up. Anti-patterns describe undesirable constructs that may introduce er-
rors or inefficiencies. In AP-1 an internal choice is followed by a receive which
should depend on the internal choice. Sometimes the service expects a message
via p1 and sometimes via p2. However, the environment has no way of telling
what to do, because the choice was never communicated. If one compares this
with the two patterns shown in Fig. 8, it is good to see that the essential dif-
ference is that in AP-1 the environment has no way of determining an adequate
strategy. By not sending a message via p1 the receiving service may deadlock
and by sending a message via p1 the message may get stuck in the channel.
Figure 9(b) shows a variant of the same anti-pattern. The choice to execute skip
is not communicated, so the environment does not know whether it should send
a message via p2 or wait forever for a message to arrive via p1.

Note that the problem in Fig. 3(a) is similar to AP-1. The restaurant service
never communicates that the cook decided to get drunk, so the guest does not
know whether to leave or not.

2.3 Correlation Patterns

The patterns presented thus far abstract from correlation, i.e., when sending a
message via a channel it is assumed that it is routed to the appropriate service
instance. For example, in Fig. 2(a) it is assumed that the “food message” is
routed to the right instance of the guest service. If there are multiple guests,
there will be multiple instances of GS 1 and RS 1. The “food message” needs
to the related to the “order message” (i.e., the right dish is cooked), and the
“money message” needs to be related to the two previous messages, because
the price probably depends on the dish that was ordered. In this paper we
define correlation as establishing a relationship between a service instance and a
message.

(a) Sending (b) Receiving

Fig. 10. Notation used to explain basic correlation patterns.

Correlation is a neglected topic in service interaction. Yet correlation is om-
nipresent. Consider for example the booking of a trip, ordering a book, reviewing
papers, requesting a lab test, etc. In each of these examples multiple parties are
involved while there may be many concurrent instances. To be able to link mes-
sages to service instances, so-called correlation identifiers are used. For example,
when booking a trip a booking reference is given by the travel agency. In a hos-
pital the patient identifier is used to route lab tests to the right department.
Therefore, languages such as BPEL provide explicit mechanisms for correlation.
For example, BPEL supports the concept of “correlation sets” [9]. When a mes-
sage arrives for a web service which has been implemented using BPEL, the
message must be delivered somewhere: either to a new or an existing instance of
the BPEL process. The task of determining to which conversation (i.e., service
instance) a message belongs, is supported by correlation sets. To use a correlation
set, a BPEL program defines the set by enumerating the properties which com-
prise it, and then refers to that set from receive, reply, invoke, or pick activities
(i.e., all BPEL activities involving interaction).

To illustrate the basics of correlation, consider Fig. 10. In this figure me refers
to the identity of the service instance and you refers to the identity of some other
service instance. Messages are described by the triplet (from,to,content). from
refers to the sender of the message, to refers to the intended recipient of the
message, and content refers to the message body. The variables me, you, from,
and to refer to service instances and may be used for correlation. We replace
me, you, from, and to by the symbol * when the variable has no value or the
value does not matter. Figure 10(a) shows the notation for sending a message
(from,to,content) by a service instance described by (me,you). Figure 10(b) shows
the receiving counterpart. These notations will be used to illustrate correlation
patterns.

Figure 11 shows two correlation patterns and one anti-pattern. All refer to
sending a message. Pattern SIP-16 Leading Correlated Send depicted in Fig. 11(a)
describes the situation where a message (from,*,content) is sent. This implies
that the sender expects the other party to use the sender’s identification (i.e.,
from = me). Therefore, we say that the sender is “leading” in SIP-16. Note that
the you and to variables shown in Fig. 10(a) are all replaced by * to denote that
they are irrelevant or missing. The assignment [from:=me] attached to transi-
tion send makes sure that the sender instance reveals itself appropriately. Pattern
SIP-17 Following Correlated Send shown in Fig. 11(b) assumes that the sender

(a) SIP-16 Leading Cor-
related Send pattern

(b) SIP-17 Following
Correlated Send pattern

(c) AP-2 Uncorrelated
Send anti-pattern

Fig. 11. Correlation patterns related to sending a message.

is “following” and uses a correlation id set by the other party. Here the tu-
ple (*,to,content) is sent. Therefore, the sender needs to know the identity of
the receiver instance (i.e., to:=you). Figure 11(c) shows the anti-pattern AP-
2 Uncorrelated Send. This anti-pattern refers to the situation where no explicit
correlation information is given when sending the message. Other than the con-
tent of the message, there is no way in which the environment can correlate the
message (*,*,content) to the instance me.

Figure 12 shows four correlation patterns and one anti-pattern. Pattern SIP-
18 Leading Correlated Receive is the logical counterpart of SIP-17, i.e., the sender
uses the correlation id of the receiver. Figure 12(a) shows the type of message
(*,to,content) received and the guard [me=to] making sure that the message
is routed to the right instance. Pattern SIP-19 Following Correlated Receive
depicted in Fig. 12(b) shows the situation where the receiver “follows” the sender
and needs to know its identity you. Pattern SIP-20 Learning Correlated Receive
depicted in Fig. 12(c) shows yet another variant. Here the receiver does not know

(a) SIP-18 Leading
Correlated Receive
pattern

(b) SIP-19 Following
Correlated Receive
pattern

(c) SIP-20 Learning Cor-
related Receive pattern

(d) SIP-21 Creating Cor-
related Receive pattern

(e) AP-3 Uncorrelated Re-
ceive anti-pattern

Fig. 12. Correlation patterns related to receiving a message.

Fig. 13. SIP-22 Correlation Swap pattern.

the identity of the sender, but learns this from the incoming message. Note that
the service instance is denoted by (me,you) after receiving the message while
before it was denoted by (me,*). Pattern SIP-21 Creating Correlated Receive
shown in Fig. 12(d) is similar to SIP-19 but now a new instance is created. Note
that some languages provide a combination of SIP-19 and SIP-21, i.e., if the
message can be correlated to an existing instance, then this is done, otherwise a
new instance is created. Figure 12(e) shows the anti-pattern AP-3 Uncorrelated
Receive. Although the sender reveals its identity, the receiver has no possibility to
correlate properly (without analyzing the content of the message for “clues”). In
the example of the restaurant this would correspond to preparing a dish without
knowing which guest has ordered it.

Figures 11 and 12 show some of the basic correlation patterns. Clearly these
can be combined to identify more complex patterns. We do not aim at providing
a complete overview of such patterns. We refer to [3] for some example patterns
where correlation plays a prominent role and to [17] where a more complete clas-
sification of correlation patterns is given. Moreover, to illustrate the challenges
related to correlation, we show two more patterns.

Figure 13 shows the SIP-22 Correlation Swap pattern. Here we use the same
notations as before, so the figure should be self-explanatory. The core idea of
the pattern is that in the first message the correlation id of the left service
instance is used while in the last message the correlation id of the right service
is used. The message in the middle helps the left service instance to build up
knowledge to be able to use the other party’s correlation id in later interactions.
Seen from the viewpoint of the left service, SIP-22 uses three basic patterns: SIP-
16 (for sending the first message in a “leading role”), SIP-20 (for learning the
other instance’s id from the second message), and SIP-17 (for sending the third
message in a “following role”). As shown in Fig. 13, the first message creates a
service instance (i.e., SIP-21 is used).

Pattern SIP-23 Correlation Broker shown in Fig. 14 is an example of a pattern
involving three services. The service in the middle acts as a mediator and is

send1
(from1,*,content1)

(me1,*)

(me1,*)

[from1:=me1]
relay1

(x,y)

[to1:=y]
[x=from1]

receive2
[me1=to2]

(*,to1,content1)
receive1

(me2,*)

[me2=to1]

[from2:=me2]
send2

(from2,*,content2)(*,to2,content2) (x,y)

relay2
[y=from2]
[to2:=x]

db

(me2,*)

(me2,*)(me1,*)

Fig. 14. SIP-23 Correlation Broker pattern.

instantiated for any connection between a service instance on the right and
a service instance on the left. As a result, two services can interact without
knowing each other’s identity. Note that place db holds a token for each pair of
service instances (we assume that there is a one-to-one correspondence). The first
message is relayed to the appropriate service instance using this information. The
return message is relayed in a similar way without exposing the sending service.

2.4 More Advanced Correlation Patterns

As indicated before, correlation is of the utmost importance and the patterns
shown thus far only scratch the surface. For example, the patterns shown in
this paper use the identity of the sending or receiving instance as a correlation
id. Of course, both parties can also agree on a more neutral correlation id. Also
note that languages like BPEL support multiple correlation sets [9]. The topic of
correlation has many aspects and based on [3, 5, 17] we mention two dimensions
showing the broad scope of this problem.

SIP-23 is the only correlation pattern considering multilateral interaction.
All other correlation patterns consider just bilateral interactions. In realistic
service choreographies multilateral correlation is needed. Consider for example
the booking of a trip involving two flights, three hotels nights, two train trips, and
a rental car. This requires a network of service instances involving non-binary
dependencies (e.g., the hotel should be canceled if the flight is not possible and
the pick-up time of the car depends on the flight data).

Another dimension is related to multiple instances inside a service instance
or message. Thus far we assumed activities and messages to be atomic. This is
often not the case. For example, consider a service handling customer orders that
may consist of multiple order lines. This service needs to deal with messages and
activities at the level of a customer order and at the level of individual order lines.
For example, a customer places one order that is decomposed in smaller orders
for specific suppliers. Moreover, for a single order line there may be multiple
potential suppliers. Another example, is the organization of a conference. One
instance of a conference involves multiple authors, PC members, and reviewers.
There may be many papers, each paper requires multiple reviews, and papers are
ranked and compared based on their reviews. One reviewer may submit multiple

reviews and each paper has multiple reviews, authors, etc. This example, shows
that various types of instances interact in a complex manner.

In [5] the authors identify a patterns called Scatter-Gather. This is an example
of a pattern that involves a variable number of service instances. The goal of the
patterns is to “maintain the overall message flow when a message needs to be
sent to multiple recipients, each of which may send a reply” [5]. The Scatter-
Gather pattern broadcasts a message to multiple recipients and re-aggregates
the responses back into a single message. For example, one may ask a dozen car
rental companies for a quote, then select the best quote, and continue interacting
with the cheapest rental company.

The data intensive patterns referred to in this subsection are outside the scope
of this paper. In the remainder, we abstract from correlation and restrict the
scope to the patterns presented in Sect. 2.2. For analysis purposes we typically
look at one instance or conversation in isolation. We will show that this is often
a valid abstraction. Nevertheless, we presented several correlation patterns to
stress the importance of correlation.

3 Specifying Services

Petri nets have proven to be successful for the modeling of business processes and
workflows (see the work of Van der Aalst [15, 23], for instance). In this section
we introduce our modeling formalism for services, viz., open nets, which is a
refinement of Petri nets. In terms of the patterns we introduced in the previous
section the focus is on the basic patterns (cf. Sect. 2.2), i.e., we only consider a
single instance of each service and no correlation. We focus on service interaction,
and abstract from non-functional properties, semantical information and data.
We introduce the concept of open net composition and also formalize the notion
of compatibility. As the formalism of open nets refines classical place/transition
Petri nets, we first provide the basic definitions on Petri nets.

3.1 Basic Definitions on Petri Nets

Petri nets [12–14] consists of two kinds of nodes, places and transitions, and a
flow relation on nodes. Graphically, a place is represented by a circle, a transition
by a box, and the flow relation by directed arcs between them. Whilst transitions
represent dynamic elements, for example an activity in a service, places represent
static elements, such as causality between activities or an interface port. A state
of the Petri net is represented by a marking, which is a distribution of tokens
over the places. Graphically, a token is depicted by a black dot.

Definition 1 (Petri net). A Petri net N = [P, T, F,m0] consists of

– two finite and disjoint sets P and T of places and transitions,
– a flow relation F ⊆ (P × T) ∪ (T × P), and
– an initial marking m0, where a marking is a mapping m : P −→ N.

When referring to several Petri nets we use indices, to distinguish the con-
stituents of different Petri nets, for example, PN refers to the set of places of
Petri net N .

For the flow relation of a Petri net N we introduce the following notation to
denote the pre-set and the post-set of places and transitions. Let x ∈ P ∪ T be
a node of N . Then, •x = {y | [y, x] ∈ F} denotes the pre-set of x (i.e. all nodes
y that have an arc to x) and x• = {y | [x, y] ∈ F} denotes the post-set of x (i.e.
all nodes y with an arc from x to y).

Consider the Petri net of the guest service GS 1 in Fig. 2(a) and ignore for
the moment the interface places and its adjacent arcs. This Petri net consists
of the four places p1, . . . , p4 and the three transitions place, eat, pay. Its initial
marking is m0 = [p1]. For example, we have •p2 = {place} and p2• = {eat}.

The dynamics of a Petri net N is defined by the firing rule. The firing rule
defines enabledness of Petri net transitions and their effects. A transition t is
enabled at a marking m if there is a token on every place in its pre-set. The
firing of an enabled transition t yields a new marking m′, which is derived from
its predecessor marking m by consuming (i.e. removing) a token from each place
of t’s pre-set and producing (i.e. adding) a token on each place of t’s post-set.
The described firing relation is denoted m

t−→ m′. Thereby m t−→ m′ is a step of
N .

The behavior of a Petri netN can be enhanced from single steps to potentially
infinite transition sequences, called runs. A finite or infinite sequence m0

t1−→
m1

t2−→ m2
t3−→ . . . is a run of N if and only if, for all i, mi

ti−→ mi+1 is a step of
N . Let m and m′ be markings of N . Then, m′ is reachable from m if and only
if there exists a finite run m0

t0−→ m1
t1−→ . . .

tk−2−−−→ mk−1
tk−1−−−→ mk with m = m0

and mk = m′. We denote this reflexive transitive closure of the firing rule by
m
∗−→ m′. With RN (m) = {m′ | m ∗−→ m′} we denote the set of all markings that

can be reached from m by firing any number of transitions.
The set RN (m0) of reachable markings of a Petri net N contains all markings

that are reachable from the initial marking m0. That way, RN (m0) spans a graph
that has the set of reachable markings as its states and the transitions between
these markings as its edges. This graph is known as the reachability graph, which
can be represented by a transition system.

Consider again GS 1 in Fig. 2(a) without the interface places and their adja-
cent arcs. In its initial marking, [p1], only transition place is enabled. Firing of
transition place yields marking [p2]. There is only one firing sequence and four

reachable markings: [p1]
place−−−→ [p2] eat−−→ [p3]

pay−−→ [p4].

3.2 Open Nets

A service consists of a control structure describing its behavior and an interface to
communicate asynchronously with other services. Thereby an interface consists
of a set of (input and output) ports. In order that two services can interact
with each other, an input port of the one service has to be connected with an
output port of the other service. These connected ports then form a channel.

Asynchronous message passing means that communication is non-blocking, i.e.,
after a service has sent a message it can continue its execution and does not have
to wait until this message is received. Furthermore, messages can ‘overtake’ each
other, i.e., the order in which the messages are sent is not necessarily the order
in which they are received.

We model services as open nets which have been introduced as ‘open workflow
nets’ in [24]. An open net is a Petri net as defined in the previous section and thus
it can adequately model the control structure of a service. The set of final states
of a service, i.e., the states in which it may successfully terminate, is modeled
by a set of final markings. The service interface is reflected by two disjoint sets
of input and output places. Thereby, each interface place corresponds to a port.
An input place has an empty pre-set and is used for receiving messages from
a distinguished channel whereas an output place has an empty post-set and is
used for sending messages via a distinguished channel.

Definition 2 (Open net). An open net N = [P, T, F, I, O,m0, Ω] consists of
a Petri net [P, T, F,m0] together with

– an interface (I∪O) ⊆ P defined as two disjoint sets I of input places and O
of output places such that •p = ∅ for any p ∈ I and p• = ∅ for any p ∈ O,
and

– a set Ω of final markings.

We further require that in the initial and the final markings the interface places
are not marked, i.e., for all m ∈ Ω ∪ {m0} we have m(p) = 0, for all p ∈ I ∪O.

Graphically, we represent an open net like a Petri net with a dashed frame
around it. The interface places are depicted on the frame. Final markings have
to be described separately.

We refer to an open net with an empty interface as a closed net. A closed net
can be used to model a service choreography, for instance.

Definition 3 (Closed net). An open net N with an empty interface, i.e., IN =
∅ and ON = ∅, is a closed net.

The seven nets in Figs. 2 and 3 are open nets. For example, the open net
GS 1 in Fig. 2(a) has I = {food} and O = {order,money}. We define the final
marking Ω = {[p4]}.

A closed net has finitely many states if it is bounded, i.e., no place can contain
infinitely many tokens in any reachable marking.

Definition 4 (Boundedness). A closed net N is k-bounded if there exists a
k ∈ N such that for each reachable marking m ∈ R(N)(m0), m(p) ≤ k, for all
p ∈ PN .

3.3 Composing Open Nets

The general idea of SOA is to use services as building blocks for designing com-
plex services. To this end, services have to be composed, i.e., pairs of input and
output ports of these services are connected using a channel. Communication
between these services takes place by exchanging messages via these channels.
Composing two open nets is modeled by fusing pairwise equally labeled input
and output places. Such a fused interface place models a channel and a token on
such a place corresponds to a pending message in the respective channel.

For the composition of open nets, we assume that all constituents (except for
the interfaces) are pairwise disjoint. This can be achieved easily by renaming. In
contrast, the interfaces intentionally overlap. For a reasonable concept of compo-
sition of open nets, however, it is convenient to require that all communication
is bilateral and directed, i.e., every interface place p ∈ I ∪ O has only one open
net that sends into p and one open net that receives from p. Thereby the sending
open net has the output place and the receiving open net has the corresponding
equally labeled input place. We refer to open nets that fulfill these properties as
interface compatible.

Definition 5 (Interface compatible open nets). Let N1, N2 be two open
nets with pairwise disjoint constituents except for the interfaces. If only input
places of one open net overlap with output places of the other open net, i.e.,
I1 ∩ I2 = ∅ and O1 ∩O2 = ∅, then N1 and N2 are interface compatible.

As an example, each of the four pairs of open nets depicted in Figs. 2 and 3
are interface compatible open nets.

Composing two open nets means to merge their respective shared constituents.
As we only define composition for interface compatible open nets, the only shared
constituents are the interface places. In other words, composition corresponds
to place fusion which is well-known in the theory of Petri nets.

Definition 6 (Composition of open nets). Let N1 and N2 be two interface
compatible open nets. The composition N = N1 ⊕ N2 is the open net with the
following constituents:

– P = P1 ∪ P2,
– T = T1 ∪ T2,
– F = F1 ∪ F2,
– I = (I1 ∪ I2) \ (O1 ∪O2),
– O = (O1 ∪O2) \ (I1 ∪ I2),
– m0 = m01 ⊕m02, and
– Ω = {m1 ⊕m2 | m1 ∈ Ω1,m2 ∈ Ω2}.

For markings m1 of N1 and m2 of N2 which do not mark the interface places,
their composition m = m1⊕m2 is defined by m(p) = mi(p) if p ∈ Pi, for i = 1, 2.

Composition of two open nets M and N results in an open net again. Com-
posing M and N means merging input places of M with equally labeled output

places of N (and vice versa). Therein, bilateral and directed communication be-
tween the components is guaranteed. The initial marking of the composition is
the sum of the initial markings of M and N , and the set of final markings of
the composition is the Cartesian product of the sets of final markings of M and
N . This is reasonable, because Definition 2 ensures that the only shared con-
stituents of M and N , the interface places, are not marked in the initial or final
markings.

As an example, all pairs of open nets in Sect. 1 are interface compatible.
Thus we can compose them by merging equally labeled interface places. Each
resulting composition is a closed net.

To apply composition to an arbitrary number of open nets, we require these
open nets to be pairwise interface compatible. This ensures bilateral commu-
nication as for a third open net N3, a communication taking place inside the
composition of open nets N1 and N2 is internal matter.

Open net composition is commutative and associative, i.e., for interface com-
patible open nets N1, N2 and N3 holds N1⊕N2 = N2⊕N1 and (N1⊕N2)⊕N3 =
N1 ⊕ (N2 ⊕N3). Thus, composition of a set of open nets can be broken into re-
cursive pairwise composition.

3.4 Behavioral Properties

We want the composition of a set of services to be compatible. Obviously, there
is no unique definition of compatibility. A minimal requirement is, however,
the absence of deadlocks in a service. A stronger criterion is the possibility
of a service to terminate from every reachable state. This criterion excludes
deadlocks and in addition livelocks, where a livelock is a set of reachable states
of a service from which neither a deadlock nor a final state is reachable. Besides
deadlocks and livelocks one may also want to exclude the existence of dead
activities in a service. This criterion of compatibility coincides with the soundness
notion for workflows [15]. Obviously, compatibility is only of interest for a service
choreography which is modeled by a closed net, i.e., an open net with an empty
interface.

In this paper we say that a closed net is compatible if it is deadlock-free,
but most of the techniques can also be used for other notions of compatibility.
Thereby a deadlock is a reachable, non-final marking m in N in which the open
net N gets stuck, i.e., no transition is enabled in m.

Definition 7 (Deadlock). Let N = [P, T, F, I, O,m0, Ω] be a closed net. A
reachable marking m ∈ RN (m0) is a deadlock in N iff m /∈ Ω and no transition
t ∈ T is enabled in m. If no such m exists in N , then N is deadlock-free.

This definition of a deadlock differs from the standard definition in the litera-
ture, as we discriminate between terminating (final) states and non-terminating
states (i.e., deadlocks).

If we assume Ω = {[p4, p8]} for all compositions in Figs. 2 and 3, then GS 1⊕
RS 2 has a deadlock ([p2, p6]) and GS 2⊕RS 3 has also a deadlock ([p4, food, p7]).
The other two compositions, GS 1 ⊕ RS 1 and GS 3 ⊕ RS 4, are deadlock-free.

Given an open net N we are interested in those open nets M such that their
composition M ⊕N is a deadlock-free closed net.

Definition 8 (Strategy, controllability). Let M , N be two open nets such
that IM = ON and OM = IN . Then, M is a strategy for N iff M ⊕ N is
deadlock-free. With Strat(N) we denote the set of all strategies for N . N is
controllable iff its set of strategies is nonempty.

If N is not controllable, then it is fundamentally ill-designed, because it
cannot properly interact with any other open net.

In our examples, GS 1 is a strategy for RS 1 and vice versa, for instance.
Hence, both open nets are controllable. Moreover, each of the seven open nets
in Figs. 2 and 3 is controllable. For GS 2 and RS 3 this might be surprising at
first sight. However, a restaurant service that only receives the order and then
terminates is a strategy for GS 2, thus forcing the customer to leave. A strategy
for RS 3 must be aware that after having ordered the cook may get drunk, in
which case no food will be served. Nevertheless, the guest cannot be sure, and
hence he must stay in the restaurant in order to eat the food in case it is served.
This can be modeled by open net GS 1 with final markings Ω = {[p2], [p4]}, i.e.,
after having ordered, the guest does not need to eat, but if food is served, he
will eat and pay.

4 Exposing Services

For automatically selecting and composing services in a well-behaved manner,
information about the services has to be exposed. In particular, this information
must be sufficient to decide whether the composition of any service R with any
service S is compatible. Usually, the information about some services S is stored
in a repository. Selecting a service means to find for a given service R (whose
behavior is given) a compatible service S in the repository. There are two ways
of exposing services.

In the first approach, the behavior of S is exposed. Well-behavior of the
composition of R and S can be verified using standard state space verification
techniques [25]. However, organizations usually want to hide the trade secrets of
their services and thus need to find a proper abstraction of S which is published
instead of S.

The second approach does not expose the behavior of S, but a class of services
R that is compatible with S, e.g., the set Strat(S). Then the composition of R
and S is compatible if Strat(S) contains R. From the set of strategies it is in
general not possible to derive the original service.

However, Strat(S) is in general an infinite set of services. Hence, the challenge
is to find a compact representation of this set. To this end, operating guidelines
can be used.

In this section we only consider the latter approach of exposing services and
thus recapitulate the concept of an operating guidelines [26, 27]. The operating

guidelines OG(N) of an open net N is a (finite) automaton enhanced with some
annotations. It represents the set Strat(N) of all strategies for N .

Strictly speaking, OG(N) does not characterize a set of open nets, but the
behavior of these nets, because two (structurally) different open nets may have
the same behavior. So we continue by first defining the behavior of an open net,
which is a labeled transition system, and then introducing operating guidelines.

4.1 Behavior of Open Nets

The behavior of an open net N is basically the reachability graph of the inner
subnet inner(N) of N , which defines the Petri net that results from removing
the interface places and the adjacent arcs from N . Obviously, inner(N) and N
coincide if N is a closed net.

Definition 9 (Inner subnet). Let N = [P, T, F, I, O,m0, Ω] be an open net
and let P ′ = P \ (I ∪ O) be the set of internal places of N . Then, inner(N) =
[P ′, T, F ∩ ((P ′ × T) ∪ (T × P ′)), ∅, ∅,m0, Ω] is the inner subnet of N .

Often we restrict ourselves to open nets where every transition is connected
to at most one interface place. We refer to such open nets as elementary com-
municating open nets. This restriction is not significant, as every open net can
be transformed to an equivalent elementary communicating open net [27]. All
examples shown in Sect. 1 are elementary communicating open nets.

For elementary communicating open nets we define a mapping that assigns
a label to each transition. We use these labels to represent the transition system
of an open net N .

Definition 10 (Transition label of open nets). Let N = [P, T, F, I, O,m0, Ω]
be an elementary communicating open net. The transition labels for N are de-
fined by the mapping l : T → I ∪O∪{τ} (τ 6∈ I ∪O) such that l(t) is the unique
interface place adjacent to t ∈ T if one exists, and l(t) = τ if t is not adjacent
to any interface place.

In the examples we add a preceding question mark, ‘?’, to each label of a
transition connected to an input place and a preceding exclamation mark, ‘!’,
to each label of a transition connected to an output place. For example, the
inner subnet of GS 2 has the labels l(place) = !order, l(eat) = ?food, l(pay) =
!money, l(leave) = τ .

The behavior of an open net N can now be defined by the reachability graph
of the inner structure of N , where the transitions are labeled using the mapping
l defined in Definition 10. Notice, the transition labels represent actions on an
asynchronous channel.

Definition 11 (Behavior of open nets). The behavior of an open net N =
[P, T, F, I, O,m0, Ω] is defined by the transition system TS (N) = [Q, l, δ, q0, QF],
where

– Q = Rinner(N)(m0) is the (nonempty) set of reachable markings of inner(N),

!order

!money

?food

τ

!order

!money

?food

r1

r2

r3

r4

r5

r6

r7

r8

(a) TS(GS1)

!order

!money

?food

τ

!order

!money

?food

r1

r2

r3

r4

r5

r6

r7

r8

(b) TS(GS2)

s1: !order !money τ

s2: !order τ

s4: ?food τ

s6: final τ

s3: !money ?food τ

s5: !money τ

!order!money

!order !money ?food

?food
!money

(c) OG(RS1)

q1: !order τ

q2: (?food final) τ

q3: !money τ

q4: final τ

!order

!money

?food

(d) OG(RS3)

Fig. 15. Behavior of open nets GS1 and GS2 and operating guidelines (guaranteeing
1-boundedness) of open nets RS1 and RS3.

– l is the labeling function,
– [m, l(t),m′] ∈ δ iff m

t−→ m′, for t ∈ T , is the transition relation,
– q0 = m0 is the initial state, and
– QF = Ω is the set of final states.

Figures 15(a) and 15(b) show the behavior of open nets GS 1 and GS 2, re-
spectively. States r4 and r8 denote final states. In Fig. 15(a) the states r1, r2, r3
and r4 correspond to the markings [p1], [p2], [p3], and [p4] in GS 1, respectively.

To relate different service behaviors, we introduce the well-known weak sim-
ulation relation [28]. Weak simulation is defined for (labeled) transition systems.
Since we can compute the behavior of any open net in terms of a transition sys-
tem, weak simulation is also well-defined for open nets. Let τ∗ denote a (possible
empty) sequence of τ transitions.

Definition 12 (Weak simulation relation). Let P and R be transition sys-
tems and let â stand for τ∗ if transition label a is τ , and a otherwise. A binary
relation %P,R ⊆ QP ×QR is a weak simulation relation of P by R iff for every
[qP , qR] ∈ %P,R, such that there is a transition [qP , a, q′P] ∈ δP in P , there is a
transition [qR, â, q′R] ∈ δR in R and [q′P , q

′
R] ∈ %P,R. R weakly simulates P iff

there is a weak simulation relation %P,R of P by R such that [q0P
, q0R

] ∈ %P,R.

Consider again Figs. 15(a) and 15(b). TS (GS 2) weakly simulates TS (GS 1)
using the relation %TS(GS2),TS(GS1) = {[r1, r5], [r2, r6], [r3, r7], [r4, r8]}. TS (GS 1)
also weakly simulates TS (GS 2) using the relation %TS(GS1),TS(GS2) = {[r5, r1],
[r6, r2], [r7, r3], [r8, r4], [r8, r2]}. So the final states do not matter for weak simu-
lation.

4.2 Operating Guidelines

For an open net N we have the set Strat(N) of all strategies for N . Since the set
Strat(N) is in general infinite, we need to construct a compact characterization

of this set. To this end, we introduce operating guidelines, a (automaton-based)
representation of Strat(N).

An operating guidelines OG(N) of an open net N characterizes the set
Match(OG(N)) = {TS (M) |M ∈ Strat(N)}, i.e., the behaviors of all strategies
for N and thus the set Strat(N). The set Match(OG(N)) contains a transition
system, say TS (M∗), that has the least restrictions [29] and any open net M∗

is called a most permissive strategy for N . More precisely, TS (M∗) weakly sim-
ulates the behavior TS (M) of each strategy M for N . The transition system
TS (M∗) is the first ingredient of OG(N). As an example, ignore the annota-
tions inside the states of Fig. 15(d). Apart from the final states the automaton
of Fig. 15(d) is the most permissive strategy for the open net RS 3.

Unfortunately, TS (M∗) also weakly simulates some transition systems, for
which the corresponding open net is not a strategy for N . For example, TS (GS 1)
(cf. Fig. 15(a)) is weakly simulated by the most permissive strategy for RS 3 (cf.
Fig. 15(d)), but GS 1 is not a strategy for RS 3. In order to exclude such transition
systems, we need to specify which restrictions of the structure of TS (M∗) are
behaviors of strategies for N . This can be achieved by specifying which edges of
TS (M∗) have to be present in the weak simulation between TS (M∗) and any
TS (M), for any strategy M for N . To this end, every state q of TS (M∗) is
annotated with a Boolean formula Φ(q), the second ingredient of OG(N).

A literal of our Boolean formulae Φ is an element of the set MP of transition
labels of M∗ (MP stands for message ports) or one of the special literals τ and
final (representing an internal transition and a final state, respectively). With
MP+ we denote the set MP ∪ {final , τ}. As Boolean connectors, we only need
∨ (Boolean or) and ∧ (Boolean and). Let BF be the set of all such Boolean
formulae over MP+.

Thus, an operating guidelines OG(N) = BΦ is a Boolean annotated service
automaton that consists of a deterministic automaton B and a Boolean annota-
tion Φ. Thereby B is the behavior TS (M∗) of the most permissive strategy for
N .

Definition 13 (Boolean annotated service automaton). A Boolean anno-
tated service automaton (BSA) BΦ = [Q,MP , δ, q0, Φ] consists of

– a nonempty set Q of states,
– a set MP of transition labels such that final , τ /∈ MP,
– a deterministic transition relation δ ⊆ Q×MP ×Q,
– an initial state q0, and
– a Boolean annotation function Φ : Q→ BF .

Figures 15(c) and 15(d) show two BSAs. For example, the BSA in Fig. 15(d)
has four states q1, . . . , q4. The initial state is q1. The annotations are !order ∨ τ
in state q1, (!food ∧ final) ∨ τ in state q2, etc.

We use Boolean annotated service automata to represent the behavior of
a set of open nets. Therefore, we take a BSA BΦ and define when a service
described in terms of an open net M matches with BΦ. A (Boolean) assignment
is a mapping β : MP+ → {true, false} assigning to each literal a truth value.

Furthermore, an assignment β satisfies a Boolean formula φ ∈ BF , denoted by
β |= φ, if φ evaluates to true using standard propositional logic semantics. Open
net M matches with BΦ if

1. its behavior TS (M) is weakly simulated by BΦ and
2. for every state qm of TS (M) that is weakly simulated by a state q of BΦ,

the transitions leaving qm and the fact whether qm is a final state of TS (M)
constitute a satisfying assignment for Φ(q).

Definition 14 (Assignment). Let MP be a set of message ports. An assign-
ment of the behavior TS (M) = [Q, l, δ, q0, QF] of an open net M assigns to each
state q ∈ Q a Boolean assignment βTS(M)(q) : MP+ → {true, false} defined by:

βTS(M)(q)(x) =


true, if x 6= final and there is a state q′ with [q, x, q′] ∈ δ,
true, if x = final and q ∈ QF ,
false, otherwise.

As an example, TS (GS 2) (see Fig. 15(b)) assigns in state r5 true to !order,
in state r6 true to ?food and τ , in state r7 true to !money and in state r8 true to
final. To all other literals in each state false is assigned.

With the help of the Boolean assignment β matching of an open net with a
BSA can be defined as follows.

Definition 15 (Matching). Let TS (M) be the behavior of an open net M
and let BΦ be a BSA such that TS (M) and B have the same transition labels.
Then M matches with BΦ iff B weakly simulates TS (M) using a relation % ⊆
QTS(M) × QB such that for each [qM , qB] ∈ %: βTS(M)(qM) |= Φ(qB). Let
Match(BΦ) denote the set of all open nets that match with BΦ.

Consider again Fig. 15. TS (GS 1) matches with the BSA in Fig. 15(c), i.e.,
Fig. 15(c) weakly simulates TS (GS 1) and in each pair of states of the weak
simulation relation the assignment β assigns true to sufficiently many literals
such that the formula holds. As a counterexample, TS (GS 1) does not match
with the BSA in Fig. 15(d). Observe the existence of a weak simulation relation.
But being in related states [r2, q2], r2 assigns only true to ?food yielding (true∧
false)∨false which is false. TS (GS 2) matches with none of these BSAs. In case of
Fig. 15(c), being in related states [r6, s3], a τ transition is possible in r6 yielding
related states [r8, s3] in the weak simulation (note that by Definition 12 the
BSA may execute the empty τ sequence). However, in this pair of states the
annotation of s3 is violated, because r8 only assigns true to final. For the same
reason TS (GS 2) does not match with the BSA in Fig. 15(d). There is a pair
of states [r8, q2] in the weak simulation relation, where the annotation of q2 is
violated (TS (GS 2) can neither receive a message food being in its final marking
nor perform a τ -labeled transition).

An operating guidelines of an open net N is a BSA such that every matching
service M is a strategy for N and every strategy for N matches with BΦ. In
other words, the sets Match(Bφ) and Strat(N) must be equal.

Definition 16 (Operating guidelines, OG). The operating guidelines
OG(N) of an open net N is a BSA such that Match(OG(N)) = Strat(N).

For uncontrollable open nets N (i.e., Strat(N) = ∅) the OG consists of a
single state that is annotated with false, assuring that no open net matches
with this OG .

Figures 15(c) and 15(d) depict the operating guidelines of RS 1 and RS 3.
Since TS (GS 1) matches with OG(RS 1), we conclude that GS 1 is a strategy for
RS 1. TS (GS 1) does not match with OG(RS 3), and thus GS 1 is not a strategy
for RS 3. For the same reason GS 2 is not a strategy for RS 1 nor for RS 3.

For every controllable open net N , there exists a most permissive strategy,
i.e., a strategy M that has the least restrictions of all strategies [29]. Thus,
the behavior TS (M) of M corresponds exactly to the transition system of the
underlying automaton of OG(N). The final states of TS (M) are the states of
OG(N) with final in their annotation.

Definition 17 (Most permissive strategy). Let OG(N) = [Q,MP , δ, q0, Φ]
be the operating guidelines for a controllable open net N . Then, an open net
M is the most permissive strategy for N iff TS (M) = [Q,MP , δ, q0, Ω], where
Ω = {q | final occurs in Φ(q)}.

So removing the annotations in the states of OG(RS 1) and OG(RS 3) and
adding all states that contain a literal final to the set of final states yields the
most permissive strategy for RS 1 and RS 3, respectively.

It is worthwhile mentioning that for each open net there exists an operat-
ing guidelines that only requires negation-free annotations and a deterministic
structure [27]. This eases the implementation of the matching procedure. In spite
of these restrictions, an operating guidelines is able to characterize even nonde-
terministic service models. To this end, each Boolean annotation has a disjunct
τ (see Fig. 15, for instance) as otherwise a state of a transition system that can
only perform a τ transition cannot satisfy the annotation of the respective state
in the operating guidelines.

5 Replacing and Refining Services

In this section we consider another important application in an SOA: service
replacement and service refinement. We define an accordance relation on any
two services S and S′ that ensures that every compatible service for S is also
compatible with S′, and hence S can be replaced by S. To decide accordance
we present a sufficient criterion based on projection inheritance and a precise
criterion based on operating guidelines. Finally, we show how to derive a service
S′ from a service S by using accordance-preserving transformation rules.

5.1 A Notion of Accordance

Given an open net N , it might be necessary to change or add some functionality
of N by replacing it by a new version N ′. Because we assume that N does not

know each service that uses N , N ′ must support each compatible service for N ,
i.e., all elements in Strat(N). With accordance we demand that every compatible
service for N is compatible with N ′ as well. An application for accordance is the
upgrade of a web shop which should not affect any client. This motivates the
following notion of accordance between open nets N and N ′. To this end, N and
N ′ must be interface equivalent open nets.

Definition 18 (Interface equivalent open nets). Two open nets M and N
are interface equivalent iff IM = IN and OM = ON .

Definition 19 (Accordance). Let N and N ′ be two interface equivalent open
nets. N ′ can replace N under accordance (N ′ accords with N , for short) iff
Strat(N) ⊆ Strat(N ′).

Accordance guarantees that every strategy for N is a strategy for N ′ as well.
In addition, accordance allows N ′ to have more compatible services. Accordance
is a pre-order, i.e., it is reflexive and transitive.

As an example, the open nets RS 1 and RS 3 in Figs. 2(b) and 3(a) are interface
equivalent and RS 1 accords with RS 3. In the next subsection we present a
method to prove this.

Many different accordance notions—often called conformance—exists in the
literature, but there are always some differences to accordance. Vogler [30] pre-
sents a deadlock-preserving equivalence for Petri nets with an interface, but he
does not distinguish between deadlocks and final markings. Fournet et al. [31]
also formalize the absence of deadlocks, but their pre-order is coarser than ac-
cordance (see [32]). The approaches of [33, 34] formalize a stronger termination
criterion, namely the absence of deadlocks and livelocks. In addition, [34] de-
mands only the environment to terminate, but not the service itself.

5.2 Deciding Accordance

Deciding accordance of two open nets N and N ′ is a nontrivial problem, because
we have to compare the two possible infinite sets of strategies Strat(N) and
Strat(N ′). We introduce two approaches for deciding accordance. One approach,
projection inheritance, decides accordance on the net structure of N and N ′.
The second approach uses the operating guidelines OG(N) and OG(N ′), i.e.,
the compact characterizations of Strat(N) and Strat(N ′), to decide accordance.

Projection Inheritance Inheritance is one of the key concepts of object-
orientation. In object-oriented design, inheritance is typically restricted to the
static aspects (e.g., data and methods) of an object class. In many cases, how-
ever, the dynamics is of prime importance. Therefore, projection inheritance [35]
focuses on the dynamics. Projection inheritance compares process models by es-
tablishing a subclass-superclass relationship. The subclass process is indeed a
subclass if it inherits particular dynamic properties of its superclass.

Projection inheritance is based on branching bisimulation [36] (to compare
the processes) and abstraction (to hide tasks). The assumption is that the sub-
class adds tasks to the superclass such that after hiding the additional tasks both
are equivalent. The basic idea of projection inheritance can be characterized as
follows:

“If it is not possible to distinguish the behaviors of x and y when arbi-
trary methods of x are executed, but when only the effects of methods
that are also present in y are considered, then x is a subclass of y” [35].

Projection inheritance was defined for workflow nets in [35], but in this defi-
nition projection inheritance refers to “methods” rather than the “sending and
receiving of messages”. In [37] projection inheritance has been reformulated for
open nets by the following mapping: A transition that is connected to an inter-
face place presents a method present in both the superclass and the subclass.

We continue by defining branching bisimulation for transition systems (and
hence also for open nets). In order to apply this equivalence notion in our setting,
branching bisimulation should guarantee that, for each final state of TS , there
exists a final state in TS ′ and both states are related by branching bisimulation.

Definition 20 (Branching bisimulation). Two labeled transition systems TS
and TS ′ are branching bisimular iff there exists a symmetric relation %bb such
that [q0, q′0] ∈ %bb and, for all q1, q′1 holds: If [q1, q′1] ∈ %bb and q1

α−→ q2, then
either

– α = τ and [q2, q′1] ∈ %bb or

– there are q′2, q
′
3 such that q′1

τ∗−→ q′2
α−→ q′3, [q1, q′2] ∈ %bb, and [q2, q′3] ∈ %bb.

Furthermore, for each final marking q ∈ QF holds: if [q, q′] ∈ %bb, then either
q′ ∈ Q′F or there exists a transition sequence τ∗ starting from q′ that contains a
state q′1 ∈ Q′F with [q, q′1] ∈ %bb.

To decide whether two open nets are related by projection inheritance, it is
sufficient to check if their behaviors are branching bisimular. In contrast to [35],
we do not need to define an abstraction operator. In our mapping, the comparison
of the two open nets is restricted to the transitions that are connected to an
interface place. We abstract from all other transitions by labeling them with τ .
The labeling, however, is fixed in Definition 10 (transition label) and thus no
additional definition of an abstraction is necessary. Consequently, we can define
projection inheritance of two open nets as follows.

Definition 21 (Projection inheritance). Two open nets N and N ′ are re-
lated by projection inheritance iff their behaviors are branching bisimular.

Note that projection inheritance is an equivalence.
As an example, consider TS (GS 1) and TS (GS 2) in Figs. 15(a) and 15(b), re-

spectively. Although TS (GS 2) simulates TS (GS 1) they are not branching bisim-
ular. The reason is that the τ transition in state r6 yields a relation between states

r2 and r8 which obviously violates branching bisimulation. Thus, GS 1 and GS 2

are not related under projection inheritance.
In [37] we have proven that the accordance notion is more liberal than pro-

jection inheritance, i.e., projection inheritance implies accordance (in both di-
rections). This gives a sufficient criterion for deciding accordance.

Theorem 1 (Projection inheritance implies accordance [37]). Let N and
N ′ be two open nets. If N and N ′ are related by projection inheritance, then N ′

accords with N and N accords with N ′.

Although the notion of projection inheritance preserves all strategies, it turns
out that in practice it is too restrictive. In other words,N accords withN ′ andN ′

accords withN does in general not imply thatN andN ′ are related by projection
inheritance. This is mainly caused by the fact that projection inheritance looks
at the structure of the nets rather than the exchange of messages. For example,
when messages are sent, their order does not really matter. This is caused by
the fact that we consider asynchronous message passing, i.e., messages may be
consumed in a different order than they were produced. Nevertheless, projection
inheritance will differentiate between different orderings of sending messages. As
another example, open nets RS 1 and RS 3 are not branching bisimular, but RS 1

accords with RS 3.

Checking Accordance with Operating Guidelines We consider now a
more liberal refinement notion that is necessary and sufficient.

Remember that we need to compare the sets Strat(N) and Strat(N ′) in
order to decide accordance of N and N ′. The problem is that the set Strat may
correspond to an infinite set of open nets. With the operating guidelines of N
and N ′ we have, however, a compact representation of Strat(N) and Strat(N ′)
which can be used to decide accordance. To this end, we define a refinement
relation v for operating guidelines. Informally, OG(N) v OG(N ′), i.e., OG(N ′)
refines OG(N), if and only if there is a simulation relation between the states of
OG(N) and OG(N ′) such that the annotations in OG(N) imply the annotations
in OG(N ′). Here we need a (strong) simulation relation. However, operating
guidelines are deterministic (see Definition 13) and for deterministic transition
systems the notions of (strong) and weak simulation are equivalent.

Definition 22 (Refinement of OGs). Let N and N ′ be interface equivalent
open nets and let OG(N) = [Q,MP , δ, q0, Φ] and OG(N ′) = [Q′,MP ′, δ′, q′0, Φ

′]
be the corresponding operating guidelines. Then, OG(N) v OG(N ′) (i.e., OG(N ′)
refines OG(N)) iff there is a simulation relation ξ ⊆ Q × Q′ such that for all
[q, q′] ∈ ξ, the formula Φ(q)⇒ Φ′(q′) is a tautology.

As an example, consider the two operating guidelines OG(RS 1) and OG(RS 3)
in Fig. 15. RS 1 and RS 3 are interface equivalent and OG(RS 1) simulates OG(RS 3),
i.e., each step in OG(RS 3) can be mimicked in OG(RS 1). Furthermore, the anno-
tations of OG(RS 3) imply the annotations in OG(RS 1). For example, !order∨ τ

implies !order∨!money∨τ in [q1, s1] ∈ ξ, (?food∧final)∨τ implies !money∨?food∨τ
in [q2, s3] ∈ ξ, etc. Consequently, we have OG(RS 3) v OG(RS 1). It is easy to
observe that OG(RS 1) v OG(RS 3) does not hold, because OG(RS 3) does not
simulate OG(RS 1).

The relation v is a pre-order. With the help of the next theorem we show
that OG(N ′) refines OG(N) iff N ′ accords with N and thus it can be used to
decide accordance of N and N ′. This result has been first introduced in [37] for
acyclic open nets and has been extended to cyclic open nets in [32].

Theorem 2 (Checking accordance [32]). Let N and N ′ be two open nets
and let OG(N) and OG(N ′) be the corresponding operating guidelines. Then,
OG(N) v OG(N ′) iff Strat(N) ⊆ Strat(N ′).

Based on the above consideration we conclude that Strat(RS 3) ⊆ Strat(RS 1),
and hence RS 1 accords with RS 3.

The value of Theorem 1 and Theorem 2 is that accordance can be checked
independently of the services that use N , and only N and N ′ have to be known
to decide accordance.

5.3 Refining Services

In the previous section we have presented an algorithm to decide for two given
open nets N and N ′ whether N ′ accords with N and thus can replace N without
violating any strategy for N . However, designing N ′ is a nontrivial and error-
prone task even for experienced service designers. In order to support service
designers, we introduce an approach to refine open nets. Given an open net
N we want to incrementally transform N to an open net N ′ such that every
transformation step preserves accordance. To this end, fragments of N are in-
crementally replaced by other fragments. In this approach, a fragment M of N is
replaced by another fragment M ′ yielding the open net N ′. We prove that if M ′

accords with M , then N ′ accords with N . The results we are going to present
in this section have been published in [37].

An open net M is a fragment of an open net N if there is an open net Nrest

and the composition of M and Nrest is the open net N . The set of interface places
of M is divided into two sets: some interface places of N and some internal places
R∪S of N . We use R to denote these input places and S to denote these output
places. For technical reasons we require that the initial marking of M is the
empty marking and the set of final markings is the singleton set with the empty
marking.

Definition 23 (Fragment). Let M be an open net with m0 = 0 and Ω = {0}.
Open net M is a fragment of an open net N iff there exists an open net Nrest

such that N = M ⊕Nrest .

As an example, consider the open net GS 1 in Fig. 2(a). A possible fragment
M would be the open net with PM = {p2, p3, food}, TM = {eat} and the
adjacent arcs. In this case RM = {p2} and SM = {p3}.

p4

p3 p3

Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a
Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a

d

Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a

d

Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a

d

(a) M0.

p4

p3 p3

Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a
Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a

d

Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a

d

Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a

d

(b) M1: Adding a
loop to M0.

p4

p3 p3

Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a
Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a

d

Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a

d

Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a

d

(c) M2: Putting transi-
tion d in parallel to b.

p4

p3 p3

Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a
Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a

d

Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a

d

Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a

d

(d) M3: Inserting transi-
tion d in-between a and b.

Fig. 16. Accordance-preserving transformation rules based on projection inheritance.

The next theorem states that if an open net N has a fragment M and there is
another fragmentM ′ that accords withM , then we can replaceM byM ′ without
affecting any strategy for N . Such transformations can be applied incrementally
and thus refine a service specification to an implementation by applying trans-
formation steps. The resulting implementation is correct by construction, i.e., it
preserves all strategies of the specification.

Theorem 3 (Justification of transformation rules [37]). Let N1 ⊕N2 be
a deadlock-free open net composition. Let M be a fragment of N1, and let Nrest

be an open net such that N1 = M ⊕ Nrest . For any open net M ′ that accords
with M , the composition (M ′ ⊕Nrest)⊕N2 is deadlock-free.

Inheritance-preserving Transformation Rules Based on the notion of pro-
jection inheritance, three inheritance-preserving transformation rules have been
defined in [35]. These rules correspond to design patterns for extending a su-
perclass to incorporate new behavior: (1) adding an internal loop (2) put a new
internal transition in parallel with existing transitions, and (3) insert an internal
transition in-between existing transitions.

We exemplify these rules in Fig. 16. Figure 16(a) represents a fragment M0

of an open net N . M0 contains transitions a, b and c. By Definition 23, there are
no other connections of a, b, c, p1 and p2 than those shown in Fig. 16(a). Each
transition is connected to an input and an output place. However, as indicated
by the capital letters, each interface place may correspond to a set of places.
Note that Ai, Ao, Bi, Bo, Ci, Co do not need to be disjoint. Places R and S denote
the input and output places to N . Again, R and S may be sets of places. Similar
remarks hold for the other three fragments M1, M2 and M3. For example, M1

is obtained by adding transition d to M0.
If one considers the behavior of these open nets, then M0, M1, M2 and M3 are

branching bisimular. Hence each pair of these four fragments is related by pro-

a

b

S

R

p

t2

t1 a

b

S

R

t12

M4 M5

a

b

S

R

p

t2

t1 a

b

S

R

t12

M6 M7

(a) Rule 1: Strat(M4) = Strat(M5)

a

b

S

R

p

t2

t1 a

b

S

R

t12

M4 M5

a

b

S

R

p

t2

t1 a

b

S

R

t12

M6 M7

(b) Rule 2: Strat(M6) = Strat(M7)

Fig. 17. Rule 1 and Rule 2.

jection inheritance. From Theorem 1 we conclude that the three transformation
rules depicted in Fig. 16 preserve accordance in both directions.

Inheritance-preserving transformation rules only change internal transitions
of an open net. Next we present transformation rules that affect transitions that
are adjacent to an interface place.

Accordance-preserving Transformation Rules We present five accordance-
preserving transformation rules. Four of these rules preserve accordance in both
directions and one rule preserves accordance only in one direction. Although
these transformation rules are sufficient, they are not complete, meaning they
do not cover all possible service implementations. Given an open net N , each
transformation rule specifies a fragment M of N (see Definition 23) which can
be replaced by another open net M ′ yielding an implementation of N . Theo-
rem 3 justifies that this replacement preserves all strategies for N . As in case
of the inheritance-preserving transformation rules, the rules are only informally
described and illustrated by help of some figures.

Rule 1 is depicted in Fig. 17(a) and specifies that a sequence of receiving
transitions can be merged, and the messages can be sent simultaneously. Rule 1
preserves accordance in both directions. Thus, we can derive that a sequence
of receiving transitions can also be reordered or can be executed concurrently.
Reordering of receiving transitions and executing receiving transitions concur-
rently preserve accordance in both directions. The same holds for a sequence of
sending transitions. The corresponding rule (Rule 2) is depicted in Fig. 17(b).

Rule 3 in Fig. 18(a) combines sending and receiving transitions. A receiving
transition followed by a sending transition can be executed simultaneously while
preserving accordance in both directions. Due to Rules 1 and 2, Rule 3 can
be generalized to a sequence of receiving transitions followed by a sequence of
sending transitions.

So far, we excluded the possibility that a sending transitions is followed by a
receiving transitions. Rule 4, depicted in Fig. 18(b), specifies that first sending

p1

p3

t4

a

b

S

R

p

t2

t1 a

b

S

R

t12

M8 M9

a

b

S

R

p

t2

t1

M10

a

b

S

R

p2

t3

t1

M11

t2

p4

(a) Rule 3: Strat(M8) = Strat(M9)

p1

p3

t4

a

b

S

R

p

t2

t1 a

b

S

R

t12

M8 M9

a

b

S

R

p

t2

t1

M10

a

b

S

R

p2

t3

t1

M11

t2

p4

(b) Rule 4: Strat(M10) = Strat(M11)

Fig. 18. Rule 3 and Rule 4.

and then receiving a message can also be executed concurrently and vice versa.
Rule 4 preserves accordance in both directions, too.

Figure 19(a) shows that first sending and then receiving cannot be reordered
in general: M10 does not accord with M8 and M8 does not accord with M10.
Suppose the final markings to be equivalent to the singleton set with the empty
marking. Then, the open net depicted in Fig. 19(b) is a strategy for M10, but
no strategy for M8, and the open net depicted in Fig. 19(c) is a strategy for M8

but not for M10.

a

b

S

R

p

t2

t1

M8

a

b

S

R

p

t2

t1

M10

b

a

p3

t5

t4

S

p4

t6

R

p1

t3

p2

a

b

p3

t5

t4

S

p4

t6

R

p1

t3

p2

p5

t7

(a) Anti-pattern:
Strat(M8) 6= Strat(M10)

a

b

S

R

p

t2

t1

M8

a

b

S

R

p

t2

t1

M10

b

a

p3

t5

t4

S

p4

t6

R

p1

t3

p2

a

b

p3

t5

t4

S

p4

t6

R

p1

t3

p2

p5

t7

(b) Strategy for M10

but not for M8.

a

b

S

R

p

t2

t1

M8

b

a

S

R

p

t2

t1

M10

b

a

p3

t5

t4

S

p4

t6

R

p1

t3

p2

a

b

p3

t5

t4

S

p4

t6

R

p1

t3

p2

p5

t7

(c) Strategy for M8

but not for M10.

Fig. 19. Counterexamples.

p4

b

d

p2

t4

t2

S

at1

p1

p3

t3

R

c

t5

e

b

d

p2

t4

t2

S

at1

p1

p3

t3

R

c

t5

e

t6

M12 M13

f

t7

f

Fig. 20. Rule 5 (adding an alternative branch): Strat(M12) ⊆ Strat(M13).

Figure 19(a) can be seen as an anti-pattern, however, not in the sense of the
anti-patterns mentioned in Sect. 2. The main difference is that Fig. 19(a) refers
to a problematic modification while the earlier anti-patterns refer to problematic
service definitions.

From the anti-pattern shown in Figure 19(a) it follows that first receiving
and then sending (cf. M8) cannot be transformed to a fragment that sends
and receives concurrently (M11), because we could transform the latter net to
M10 by applying Rule 4. Consequently, first receiving then sending does not
accord to sending and receiving concurrently and vice versa. Analogously, first
sending then receiving (M10) cannot be transformed to sending and receiving
simultaneously (M9), because the latter can be transformed to M8 by applying
Rule 3. Thus, first sending then receiving does not accord with sending and
receiving simultaneously and vice versa.

Rule 5 specifies a way to add an alternative branch to a fragment M12 de-
picted on the left hand side of Fig. 20. The fragment M12 first receives a and
then enters either the left or the right branch. In the left (right) branch, mes-
sage b (c) is sent, and then message d (e) is received. The fragment M12 can
be transformed to M13 by adding an alternative branch. In this branch, d is
received, and then a message f is sent. Afterwards, this branch can be arbitrary,
i.e., there can be any continuation (including direct continuation in S) of this
net as illustrated by the ellipse. Rule 5 preserves accordance in one direction
only. The intuition behind this rule is that a strategy of M12 has to wait for the
decision of M12 which branch it will enter. Otherwise, it could happen that an
environment sends d, but M12 enters the left branch and waits for message e.

Refinement of Petri nets has been addressed by many researchers. However,
most of the results require restricted Petri net classes or Petri nets without in-
terfaces. The Murata rules [13] (known for general Petri nets) also maintain
accordance, if we consider every input place as a place with some additional
incoming arcs, and every output place as a place with some additional outgoing
arcs. Refinement of places and transitions in Petri nets that preserves compat-

tFood

tMoney

(a) Tourist

tFood

tMoney

cOrder

cFood

cMoney

(b) Adapter

cOrder

cFood

cMoney

(c) Cook

tFood

tMoney

cOrder

cFood

cMoney

(d) Adapter?

Fig. 21. Running example for adapter generation

ibility of the whole net is studied in [30]. These results could be applied in our
setting.

6 Integrating Services Using Adapters

Service-oriented computing aims to create complex services by composing less-
complex services. As services are often developed independently, upon compo-
sition they may turn out to be incompatible. In this section we discuss some
sources of incompatibility and some ways to resolve them. This section is pri-
marily based on [38].

Figure 21 contains the running example for this section. The tourist mod-
eled in Fig. 21(a) enters a restaurant in a foreign country. The tourist noticed
something like a special offer on the door, but he does not understand the local
language. So he just places the required fee on the table and waits for food. The
local cook modeled in Fig. 21(c), however, insists on an order before preparing
any meal. Moreover, if the cook already gets some money before serving the
food, he may immediately stop cooking.

When integrating some services that have been developed independently,
some typical kinds of incompatibilities are:

– names of the message types;
– encoding of similar message types;
– semantics of similar message types;
– order in which messages are expected or transmitted.

It is clear that the open nets in Fig. 21(a) and Fig. 21(c) have different sets of
interface places, even if we ignore the ‘t’ and ‘c’ prefixes. Moreover, if we try to
compose them by fusing the obvious combinations of interface places, and hide
(i.e., make them internal) the other interface places, then the result contains a

deadlock: the cook waits for an order, while the tourist gives some money and
waits for food.

In this section we focus on the last kind of incompatibility, which we call
behavioral incompatibility ; however, we will not ignore the other ones. For sim-
plicity reasons, we assume that the name of each message port coincides with
the name of the message type that can be transmitted over the channel.

If the services to be composed are incompatible, there are a few options:

– replace some of the services by similar services that are compatible;
– change the implementation of some of the services;
– introduce an adapter service that bridges the incompatibilities.

In terms of the running example, these options can correspond to, respec-
tively, going to another restaurant with tourist-friendly personnel, attending a
language-and-culture course, or hiring a tour guide.

In this section we focus on the situation where the services have already been
selected, and their implementation cannot be changed; in this case, adapters are
the most obvious solution. To be able to discuss adapters as an additional service
in between the given services, we assume that the interfaces of the given services
are disjoint; this can be achieved by renaming. In the running example this has
been achieved through the ‘t’ and ‘c’ prefixes for the names of the interface
places.

In the remainder of this section, we first discuss the ingredients of an adapter
specification, and a specific language for it. Then we show how it can be used to
automatically generate an adapter, including a discussion on some of the design
decisions to be made.

6.1 Adapter Specification

In this section we discuss the contents of an adapter specification. Behavioral
incompatibilities typically manifest itself in deadlocks of the composed system.
Therefore the first ingredient of the adapter specification is a behavioral property,
in our case deadlock freedom, on the composed system (which, by definition,
guarantees that the composed system is closed). To be able to check whether
an adapter establishes deadlock freedom, the adapter specification should also
include models of the given services, say, open nets N1 and N2. For simplicity
reasons, we only discuss the integration of two given services, although it can
easily be scaled up to any number of services.

For the running example, an adapter service that establishes deadlock free-
dom is modeled in Fig. 21(b). It gives a default order to the cook, and then
passes on the food when it arrives. In the mean time it accepts the money from
the tourist, but it only forwards the money once the cook has actually served
the food. The composition of Fig. 21(a), Fig. 21(b) and Fig. 21(c) is indeed a
closed net and it is deadlock-free.

On the other hand, the service from Fig. 21(d) also establishes this property,
but is this a proper adapter? Such an example illustrates that the specification so

far admits adapters that are the composition of two unconnected components A1

and A2 such that both N1⊕A1 and N2⊕A2 are deadlock-free, but independently
of each other. Hence it admits adapters that can arbitrarily create and delete
messages, including real goods like food and money, which is not very realistic.

Apart from the requirement on the composed system, a requirement on the
internals of the adapter is needed such that it can actually be implemented. To
this end, we extend the adapter specification with the set of elementary activities
(from a semantical perspective) that can be used in the adapter.

Thus the adapter specification consist of the following three parts:

– models of the services to be composed;
– behavioral property to be established by the composed system;
– elementary activities for the adapter.

6.2 Elementary Adapter Activities

In this section we explore the typical elementary activities for an adapter, and
we describe a way to specify them. As the given services have an asynchronous
communication interface, the basic activities of an adapter are receiving a mes-
sage from an interface port, and sending a message to an interface port. As these
are separate tasks, it also possible to delay the forwarding of messages.

Internally, the activities of an adapter include ways to deal with messages;
thus reflecting semantic dependencies between certain message types. Most ap-
proaches [39–44] agree that the activities of an adapter should include the fol-
lowing activities:

– Create a message: This is possible for simple control messages, and mes-
sages with a default value. However, it is impossible for messages containing
important data such as passwords, and personal data of a user.

– Copy a message: This is possible for most electronic messages, although
it could be inappropriate for single-use data such as transaction numbers. It
is also inappropriate for messages that represent real goods.

– Delete a message: This is possible for most electronic data, while it is
inappropriate for real goods.

– Transform/Split/Merge some messages: This is possible if the under-
lying transformation routine is provided, e.g., calculating a metric measure
from an imperial one, or deriving a city name from a zip code.

Based on these example activities, it becomes clear that the applicability of an
activity to particular message types strongly depends on semantic considerations
that depend on the message types. As a result, we conclude that the possible
activities of an adapter must be specified per message type.

We specify the capabilities of an adapter using a Specification of the Ele-
mentary Activities (SEA). Given a set of message types MT , an SEA is a set
of transformation rules on these message types. The set MT contains at least
the names of the interface ports of the given services, but it may also contain
auxiliary message types.

Table 1. Examples of elementary activities in terms of transformation rules

Elementary activity Possible transformation rule

Create a 7→ a
Copy a a 7→ a, a
Delete a a 7→
Transform a, b, c into d, e a, b, c 7→ d, e or a, b, c 7→ a, b, c, d, e
Split a into b, c, d a 7→ b, c, d or a 7→ a, b, c, d
Merge a, b, c into d a, b, c 7→ d or a, b, c 7→ a, b, c, d

Definition 24 (Specification of the Elementary Activities (SEA)). Given
a set of message types MT . An SEA over the message types MT is a set of trans-
formation rules of the shape

X
Z7→ Y

where X and Y are bags (multi sets) over the set MT , and where Z is a total
function from messages of the types X to messages of the types Y .

Such a rule denotes that, using the transformation Z, a message of each type
in X is consumed, and a message of each type in Y is produced. After receiving
some messages, the adapter can apply several transformations to the internally
available messages before sending any messages. Synthesizing an adapter then
boils down to applying these rules in a right order, and sending and receiving
messages to and from the interface at a right moment.

For the synthesis of an adapter, we can largely abstract from the actual data
transformations Z. Therefore we often omit Z in the transformation rules, but
in Sect. 7 we will discuss how Z can be integrated in the synthesized adapters.

Table 1 shows some examples of activities in terms of transformation rules.
For some rules, we give two versions: one for real items and one for electronic
items. Some more-complicated patterns would require multiple rules: a typical
“collapse” pattern, where an arbitrary series of a messages has to be merged
into one message b, could be modeled using the two rules 7→ b (create an empty
‘b’) and a, b 7→ b (add a single ‘a’ to an existing ‘b’).

Many languages have been proposed that are similar to the SEA rules, but
there are subtle but essential differences. Languages like in [43, 44] do not sup-
port multiple alternative rules, like two SEA rules A 7→ B and A 7→ C that
specify that at any time the adapter can choose which rule to apply. The rules
in languages like in [39–41] have no direction [45], while the SEA rules are asym-
metric.

As an SEA represents semantical dependencies, it may be possible to use
techniques related to semantic web and ontologies to construct an SEA. As
these are research areas on their own, we only focus on using a given SEA. The
approach of [44] is interesting as it presents an interactive approach to find and
refine SEA-like specifications for adapters using mismatch trees.

For the running example, a possible SEA is the one in Table 2. Note that
the adapter from Fig. 21(d) can violate the last two transformation rules. The

adapter in Fig. 21(b) obeys the rules; moreover, it uses each rule exactly once,
but this is a coincidence (see, e.g., the running example from [38]).

Table 2. Running example: SEA

7→ cOrder
cFood 7→ tFood
tMoney 7→ cMoney

6.3 Adapter Generation

In this section we discuss how to generate an adapter. The adapter specification
consists of the given open nets N1 and N2, the deadlock-freedom property, and
an SEA. An adapter is an open net such that its composition with the given
open nets N1 and N2 is closed and deadlock-free. Furthermore, to ensure imple-
mentability, an adapter may only be constructed from the elementary activities
described by the SEA.

Adapter generation without SEA Let us first ignore the SEA, and explore
the basic construction of an adapter. Such an adapter is defined as an open
net A such that (N1 ⊕ N2) ⊕ A is deadlock-free. That is, A is a strategy for
the composition N1 ⊕ N2. Such an adapter can be computed as a witness for
controllability of N1 ⊕N2.

Adapter generation with an SEA The SEA imposes additional restrictions
on the adapter. Most approaches to adapter generation modify the computation
of a strategy with (on-the-fly) removal of the branches that violate this require-
ment. The result is typically a complex custom algorithm [39–41]. In [46, 47] it is
shown that there exists a dual approach that first integrates the SEA restrictions
with the given open nets, such that afterwards every computed strategy is an
adapter.

A conceptually simpler approach [38] is to immediately translate the SEA
rules into a new open net that is part of the adapter. We call this part of
the adapter the engine, and the remainder of the adapter the controller. This
results in a two-piece adapter that separates data (implementability) and control
(behavioral property).

The engine E is an open net that encodes all the elementary activities from
the SEA. It has an interface with the given open nets N1 and N2, and hence it
can ensure that all outgoing messages are obtained from the incoming messages
using the SEA rules only. The engine E has an additional interface to a controller
C. This interface allows the controller to decide in which order the elementary
activities are performed. Figure 22 shows a schematic representation of this
structure.

N1 E

C

N2
`

Fig. 22. Conceptual structure

Before showing an example encoding of an SEA in terms of an engine, we first
determine how it can be used to generate an adapter. Formally, given an engine E
for the SEA, we want to construct a controller C such that (N1⊕N2) ⊕ (E⊕C) is
deadlock-free. Such a controller can be computed as a witness for controllability
of (N1 ⊕ N2) ⊕ E. As every C yields an SEA-based open net E ⊕ C, every
witness C for controllability of the open net (N1 ⊕ N2) ⊕ E, yields an SEA-
based adapter E ⊕ C. So deadlock freedom is guaranteed independently of any
specifics of the used engine.

Lemma 1 (Two-piece behavioral adapter [38]). Given any open nets N1,
N2, and E. For every strategy C for the composed open net (N1 ⊕ N2) ⊕ E,
the composed open net E ⊕ C is an adapter for the open nets N1 and N2.

So, at a conceptual level, this adapter-synthesis approach consists of the
following steps, given the open nets N1 and N2 and an SEA:

1. generate an engine E from the SEA and the interface of the open net N1⊕N2;
2. synthesize a controller C as a strategy for the open net (N1 ⊕N2) ⊕ E;
3. compose engine E and controller C to obtain the final adapter A = E ⊕ C.

Note that the engine is used twice: for generating a controller, and as part of
the final adapter. The constraint-oriented approach from [48, 49] uses a “Store”
that contains part of the functionality of an engine, but it is not part of the final
adapter.

Regarding the running example, the adapter from Fig. 21(b) has been gener-
ated in this way. In what follows we first discuss the encoding of an engine and
then the selection of a controller.

6.4 Encoding an SEA as an Engine

In this section we show how an SEA can be encoded as an engine E modeled by
an open net. For simplicity of presentation, we assume that for each SEA rule,
the bags before and after the 7→ are sets; the general case follows analogously
using open nets with arc multiplicities.

Let N be the composition N1⊕N2. Let IN and ON denote the (disjoint sets
of) input and output places, respectively, of N . Let K be a set such that the
SEA consists of the rules Xk 7→ Yk, for any k ∈ K. Let MT be a set of message
types, containing (the types of) the sets of places IN and ON , and the set of
message types used in K. The SEA may contain auxiliary message types (ones
that do not occur in the given open nets), and hence we have IN ∪ON ⊆ MT .

For defining the open net E, we use names from the space (MT ∪ K) ×
{e, n, c, r, s}, where e, n, c, r, and s denote fresh names that do not occur in the
given open nets. Moreover, we assume that the sets MT and K are disjoint.

The interface of open net E consists of output places IN , input places ON
(i.e., the interfaces of the given open nets in opposite orientation), and an inter-
face (defined later on) for interaction with the controller (cf. Fig. 22). For each
message type m ∈ MT , we introduce in the open net E an internal place (m, c),
where c refers to “conceptual”. In the initial and final markings, the internal
places are empty.

The open net E has three kinds of transitions. For every input place o ∈ ON ,
there is a transition (o, r), where r refers to “receive”, to move arriving messages
from interface place o to their internal place (o, c). For every transformation
rule Xk 7→ Yk, where k ∈ K, there is a transition (k, c) to perform the actual
transformation in terms of the internal places. Finally, for every output place
i ∈ IN , there is a transition (i, s), where s refers to “send”, to move messages
from their internal place (i, c) to interface place i.

What remains is to describe the interface of the engine E with the controller
C. For every transition (o, r), where o ∈ ON , there is an output place (o, n) that
notifies an arrived message o. For every transition (k, c), where k ∈ K, there is an
input place (k, e) that enables transformation rule k, and an output place (k, n)
that notifies an execution of transformation rule k. Finally, for every transition
(i, s), where i ∈ IN , there is an input place (i, e) that enables the delivery of a
message i. Thus this engine is formally defined as:

Definition 25 (Engine). Let I,O,MT ,K be as introduced before. The engine
E is defined as an open net with the following constituents:

P = (MT × {c}) ∪ I ∪ O; m0 = 0; Ω = {0};
I = ON ∪ (K × {e}) ∪ (IN × {e}); O = IN ∪ (K × {n}) ∪ (ON × {n});
T = (ON × {r}) ∪ (K × {c}) ∪ (IN × {s});

F = Fr ∪ Fc ∪ Fs;
Fr =

⋃
o∈ON

{ [o, (o, r)], [(o, r), (o, n)], [(o, r), (o, c)] };
Fc =

⋃
k∈K ({[(m, c), (k, c)] | m : m ∈ Xk} ∪ {[(k, e), (k, c)]} ∪

{[(k, c), (k, n)]} ∪ {[(k, c), (m, c)] | m : m ∈ Yk});
Fs =

⋃
i∈IN

{ [(i, c), (i, s)], [(i, e), (i, s)], [(i, s), i] }.

Figure 23 models the engine for the running example. The left and the right
interfaces are for the tourist and the cook, respectively, while the top inter-
face is for a controller; in this figure we use simplified names for the interface
with the controller. As far as the transfer of money is concerned, the engine
looks as follows. When there is a token on the interface place tMoney, transition
(tMoney,r) transfers it to the internal place (tMoney,c) and sends a notification
to the controller. Afterwards, transition (money,c) can transform a token from
place (tMoney,c) into a token in place (cMoney,c); this is only possible if the
controller has enabled this transition, and then the controller is notified. Fi-

tFood

tMoney

cOrder

cFood

cMoney

(tFood,c) (cFood,c)

(cOrder,c)

(cMoney,c)(tMoney,c)(tMoney,r) (cMoney,s)(money,c)

(tFood,s) (cFood,r)

(cOrder,s)(order,c)

(food,c)

(tFood,e) (tMoney,n) (food,e) (food,n) (order,e) (order,n) (money,e) (money,n) (cFood,n) (cOrder,e) (cMoney,e)

Fig. 23. Running example: engine

nally, transition (cMoney,s) transfers a token from internal place (cMoney,c) to
interface place cMoney, but only if the controller has enabled this transition.

So, each internal place (and each interface place with the given open nets) is
associated with a particular message type. In terms of these places, each single
transition either follows the SEA rules, or transfers tokens from places that are
associated with the same message type. The interface places with the controller
only restrict the order in which the transitions of the engine can fire. Thus the
engine guarantees that the generated adapter adheres to the SEA, independently
of any specifics of the controller.

However, engines are not unique. For example, in some cases some of the
interface places between the engine and the controller can be removed without
changing the adapters that can be generated. In [46] techniques are presented
to compare different engines in terms of the resulting adapters.

6.5 Selecting a Controller

In this section we consider the selection of a controller for a two-piece adapter. In
general, the open net (N1 ⊕N2) ⊕ E has several strategies, and every strategy
can be used as a controller for an adapter (see Lemma 1).

A particularly interesting strategy is the most-permissive strategy (see Defi-
nition 17), as it represents somehow the largest behavior that can enforce the be-
havioral property to be established. In this way, it causes the smallest constraints
on the interface of the controller. A potential drawback of a most-permissive
strategy is its size, but it exhibits a tremendous amount of non-determinism,
which, in many cases, results in nice concurrency in terms of open nets.

On the other hand, there are usually many strategies that are smaller than
the most-permissive one. Such strategies often restrict the interaction with the
given open nets, and, in particular, reduce concurrency.

To sum up, both most-permissive strategies and arbitrary small strategies
have specific advantages and disadvantages which more or less complement each
other. This gives an opportunity to make a trade-off between the complexity of

adapter synthesis and the quality of the resulting adapter (in terms of its size
and run-time behavior).

This is also related to two kinds of application scenario’s for adapters. In the
first one, a set of services is carefully selected, and then as a final engineering
step an adapter is calculated. In the second one, a user at run-time selects some
services, and an adapter is required to make these services work together. In the
first scenario’s larger run-times are permissable than in the second scenario, but
also a higher quality is expected.

7 Tool Support

In this section we sketch how the techniques from the previous sections have
been implemented in research tools. All described tools are available at

http://www.service-technology.org/tools/

7.1 Translating Services to Open Nets

In practice, services are not modeled by formalisms such as Petri nets. Instead, a
number of service description languages have been proposed by several industrial
consortiums. The most-prominent language is BPEL.

For BPEL, there exists a feature-complete open net semantics [50] and a com-
piler, BPEL2oWFN, to translate a BPEL process to an open net. This semantics
is feature-complete in the sense that it supports all concepts of BPEL includ-
ing control flow, data flow, message flow, exception handling, and compensation
handling.

Since there is also a tool, oWFN2BPEL, to translate open nets to BPEL
(using abstract processes) [51], a complete tool chain for translations between
BPEL and open nets is available. Hence, all analysis methods for open nets can
be used for BPEL processes.

7.2 Operating Guidelines

In Sect. 4 we have introduced the notion of operating guidelines as a compact
characterization of all strategies for an open net N . Since the algorithm to com-
pute operating guidelines explores all reachable states ofN , in an implementation
we have to restrict ourselves to finite state services. Such services can still have
infinitely many strategies.

On the modeling level an open net has finitely many states if its inner struc-
ture inner(N) is bounded. The composition of two bounded open nets may,
however, result in an unbounded open net, because tokens may accumulate on
the former interface places. To achieve a bounded open net composition, we have
to restrict the number of tokens at those interface places. To this end, we need
a notion of boundedness for interface places, which has been introduced in [27]
as k-limited communication.

2,3: Fiona

1: pre−processing

controller (TS)

services

engine

SEA

adapter5: post−processing

4: Petrify

controller

Fig. 24. Tool chain for adapter generation

For unbounded open nets, controllability has been proven to be undecid-
able [52]. For the implementation of our algorithms we require open nets to be
bounded and to satisfy k-limited communication, for some k. Since services in
practice are finite-state services, this restriction does not harm our approach.

In [27] an algorithm has been presented to compute an operating guidelines
of a bounded open net. The OG construction algorithm first computes the most
permissive strategy. Therefore, it starts with an over-approximation of compati-
ble behavior of any strategy and then iteratively removes all states which cause
violations of the deadlock-freedom property. Finally, the annotations are derived
from information collected during the computation. If the service is uncontrol-
lable, the algorithm eventually removes all states. The algorithm is implemented
in the service analysis tool Fiona [50].

Besides computing the operating guidelines of an open net, Fiona can also
be used to

– decide matching of an open net with an operating guidelines;
– decide accordance of two open nets using Theorem 2;
– compute some strategy of an open net.

7.3 Adapter Generation

In this section we discuss a Fiona-based implementation [38] of the adapter
generation approach described in Sect. 6. It turns out that in the engine, the
activities for message creation can easily lead to unbounded places, including
interface places. To be able to compute an operating guidelines, we impose ar-
tificial bounds on these places. Using the techniques in [46], it can be shown
that the resulting adapter is also an adapter for the given services without the
artificial bounds. Moreover, every finite-state adapter can be synthesized if the
bounds are chosen sufficiently large.

We use the tool-chain described in Fig. 24. The inputs are an open net model
of each given service, and an SEA; the output is an open net model of the adapter.
In what follows we briefly describe the various steps:

1. Create an engine model from the SEA The procedure as described in
Sect. 6.4, including the required bounds, has been implemented in Fiona. By
construction, all outputs to the given services have been obtained from the
inputs of these services using the SEA transformation rules only.

2. Compose the service models and the engine model The composition
of service models is supported by Fiona. Afterwards we apply structural
Petri-net reduction, which consists of local graph-transformations in an open
net. It preserves the interface behavior of the transformed net, but it may
significantly reduce the number of reachable internal states. It is inspired
by classical Petri-net reduction (like [13]). We apply it for the purpose of
reducing complexity in subsequent steps.

3. Synthesize a controller as a transition system A controller is a strat-
egy, and strategy synthesis is the core functionality of Fiona. The resulting
controller is represented as a transition system rather than an open net.

4. Transform this transition system into an open net Petrify [53] is an
external tool that translates a transition system into an equivalent Petri net.
The resulting Petri net tends to exhibit a large degree of concurrency, and
tends to be significantly more compact than the original transition system.

5. Compose the engine and the controller into an adapter Like before,
the composition is supported by Fiona, and we apply structural Petri-net re-
duction afterwards. However, this time the reduction aims at simplifying the
resulting structures, thus leading to a more compact Petri-net. In particular,
the reduction may iron-out dead parts in the adapter (like SEA transitions
that are not used) or collapse a sequence of transitions into a single tran-
sition. As such a sequence may consist of a transition that stems from the
controller and another one that stems from the engine, the interface between
them may become invisible in the resulting adapter.

An optional last step is to translate the open net for the adapter into an
executable language. The tool oWFN2BPEL can generate an abstract BPEL
process that includes an opaque activity for each transition of the open net.
Remembering that SEA rules can be annotated with actual transformations (for
instance in XSL), and SEA rules correspond to transitions in the engine, we
can fill the opaque activities with actual code and turn them into executable
activities.

Currently, we are developing engines with a synchronous interface to the
controller, for which the first results show that these are more efficient. A most-
permissive strategy as controller for a synchronous engine turns out to perform
better than an arbitrary strategy (or a most-permissive strategy) as controller
for an asynchronous engine. This applies to both the run-time of the adapter
generator, and the size of the generated adapter in terms of open nets. The
example adapter in Fig. 21(b) was actually generated in this way.

8 Conclusions

The shift towards service orientation was initially intended to mainly support
cross-organizational processes. However, the wide adoption of service-oriented
architectures shows that this paradigm shift is also important for intra-organiza-
tional processes. Monolithic information systems can now be decomposed into
several smaller services. Service orientation leads to systems that can be viewed
as interacting services. Therefore, it is vital to understand service interaction in
all its aspects.

This paper studies service interaction from various angles. First of all, the
paper provides a collection of service interaction patterns. This provides an
overview of the challenges in this domain and aids in a better understanding
of the important concepts. Moreover, by presenting a few anti-patterns we re-
veal typical pitfalls in the design of services.

Secondly, the paper formalizes essential concepts such as strategies, control-
lability, and accordance. This is done in the setting of open nets. Finally, the core
of the paper focusses on three important challenges: Exposing services (Sect. 4),
Replacing and refining services (Sect. 5), and Integrating services using adapters
(Sect. 6). These challenges are non-trivial. However, the body of work centering
around open nets provides a solid basis for addressing these challenges. This is
illustrated by the availability of analysis tools that support all three challenges
and that can also work with industrial languages such as BPEL.

Acknowledgements

Van der Aalst and Mooij participate in the Poseidon project at Thales under
the responsibilities of the Embedded Systems Institute (ESI). This project is
partially supported by the Dutch Ministry of Economic Affairs under the BSIK
program.

References

1. Dumas, M., Aalst, W., Hofstede, A.: Process-Aware Information Systems: Bridging
People and Software through Process Technology. Wiley & Sons (2005)

2. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services Concepts, Archi-
tectures and Applications. Springer-Verlag, Berlin (2004)

3. Barros, A., Dumas, M., Hofstede, A.: Service Interaction Patterns. In Aalst, W.,
Benatallah, B., Casati, F., Curbera, F., eds.: International Conference on Business
Process Management (BPM 2005). Volume 3649 of Lecture Notes in Computer
Science., Springer-Verlag, Berlin (2005) 302–318

4. Decker, G., Puhlmann, F., Weske, M.: Formalizing Service Interactions. In Dust-
dar, S., Faideiro, J., Sheth, A., eds.: International Conference on Business Process
Management (BPM 2006). Volume 4102 of Lecture Notes in Computer Science.,
Springer-Verlag, Berlin (2006) 414–419

5. Hohpe, G., Woolf, B.: Enterprise Integration Patterns. Addison-Wesley Profes-
sional, Reading, MA (2003)

6. Mulyar, N., Aldred, L., Aalst, W.: The Conceptualization of a Configurable Multi-
party Multi-message Request-Reply Conversation. In Felber, P., Pu, C., Moorsel,
A., eds.: Proceedings of the OTM Conference on Distributed Objects and Applica-
tions (DOA 2007). Volume 4803 of Lecture Notes in Computer Science., Springer-
Verlag, Berlin (2007) 735–753

7. Wegner, P.: Why interaction is more powerful than algorithms. Communications
of the ACM 40(5) (1997) 80–91

8. Zaha, J., Dumas, M., Hofstede, A., Barros, A., Decker, G.: Service Interaction
Modeling: Bridging Global and Local Views. In: International Enterprise Dis-
tributed Object Computing Conference (EDOC 2006), IEEE Computer Society
(2006) 45–55

9. Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., Ford, M.,
Goland, Y., Guzar, A., Kartha, N., Liu, C., Khalaf, R., Koenig, D., Marin, M.,
Mehta, V., Thatte, S., Rijn, D., Yendluri, P., Yiu, A.: Web Services Business Pro-
cess Execution Language Version 2.0 (OASIS Standard). WS-BPEL TC OASIS,
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html (2007)

10. Aalst, W., Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow Patterns. Dis-
tributed and Parallel Databases 14(1) (2003) 5–51

11. Massuthe, P., Reisig, W., Schmidt, K.: An Operating Guideline Approach to the
SOA. Annals of Mathematics, Computing & Teleinformatics 1(3) (2005) 35–43

12. Desel, J., Esparza, J.: Free Choice Petri Nets. Volume 40 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, Cambridge, UK
(1995)

13. Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE 77(4) (1989) 541–580

14. Reisig, W.: Petri Nets: An Introduction. Volume 4 of EATCS Monographs in
Theoretical Computer Science. Springer-Verlag, Berlin (1985)

15. Aalst, W.: The Application of Petri Nets to Workflow Management. The Journal
of Circuits, Systems and Computers 8(1) (1998) 21–66

16. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Professional Computing Series. Addison Wes-
ley, Reading, MA, USA (1995)

17. Mulyar, N.: Patterns for Process-Aware Information Systems: An Approach Based
on Colored Petri Nets. PhD thesis, Eindhoven University of Technology, Eindhoven
(2009)

18. Russell, N., Aalst, W., Hofstede, A., Edmond, D.: Workflow Resource Patterns:
Identification, Representation and Tool Support. In Pastor, O., Falcao e Cunha,
J., eds.: Proceedings of the 17th Conference on Advanced Information Systems
Engineering (CAiSE’05). Volume 3520 of Lecture Notes in Computer Science.,
Springer-Verlag, Berlin (2005) 216–232

19. Russell, N., Hofstede, A., Edmond, D., Aalst, W.: Workflow Data Patterns: Iden-
tification, Representation and Tool Support. In Delcambre, L., Kop, C., Mayr,
H., Mylopoulos, J., Pastor, O., eds.: 24nd International Conference on Concep-
tual Modeling (ER 2005). Volume 3716 of Lecture Notes in Computer Science.,
Springer-Verlag, Berlin (2005) 353–368

20. Alexander, C.: A Pattern Language: Towns, Building and Construction. Oxford
University Press (1977)

21. Russell, N., Hofstede, A., Aalst, W., Mulyar, N.: Workflow Control-Flow Patterns:
A Revised View. BPM Center Report BPM-06-22, BPMcenter.org (2006)

22. Russell, N., Aalst, W., Hofstede, A.: Workflow Exception Patterns. In Dubois,
E., Pohl, K., eds.: Proceedings of the 18th International Conference on Advanced
Information Systems Engineering (CAiSE’06). Volume 4001 of Lecture Notes in
Computer Science., Springer-Verlag, Berlin (2006) 288–302

23. Aalst, W., Hee, K.: Workflow Management: Models, Methods, and Systems. MIT
press, Cambridge, MA (2004)

24. Massuthe, P., Reisig, W., Schmidt, K.: An Operating Guideline Approach to
the SOA. In: Proceedings of the 2nd South-East European Workshop on Formal
Methods 2005 (SEEFM05), Ohrid, Republic of Macedonia (2005)

25. Clarke, E., Grumberg, O., Peled, D.: Model Checking. The MIT Press, Cambridge,
Massachusetts and London, UK (1999)

26. Massuthe, P., Schmidt, K.: Operating Guidelines - an Automata-Theoretic Foun-
dation for the Service-Oriented Architecture. In Cai, K., Ohnishi, A., Lau, M.,
eds.: Proceedings of the Fifth International Conference on Quality Software (QSIC
2005), Melbourne, Australia, IEEE Computer Society (2005) 452–457

27. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services.
In Kleijn, J., Yakovlev, A., eds.: 28th International Conference on Applications and
Theory of Petri Nets and Other Models of Concurrency, ICATPN 2007, Siedlce,
Poland, June 25-29, 2007, Proceedings. Volume 4546 of Lecture Notes in Computer
Science., Springer (2007) 321–341

28. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc. (1989)
29. Wolf, K.: Does my service have partners? LNCS ToPNoC II(5460) (2008) 152–171
30. Vogler, W.: Modular Construction and Partial Order Semantics of Petri Nets.

Volume 625 of Lecture Notes in Computer Science. Springer-Verlag, Berlin (1992)
31. Fournet, C., Hoare, C.A.R., Rajamani, S.K., Rehof, J.: Stuck-Free Conformance.

In Alur, R., Peled, D., eds.: CAV 2004. Volume 3114 of LNCS., Springer-Verlag
(2004) 242–254

32. Stahl, C., Massuthe, P., Bretschneider, J.: Deciding substitutability of services
with operating guidelines. LNCS ToPNoC II(5460) (2008) 172–191

33. Bravetti, M., Zavattaro, G.: Contract Based Multi-party Service Composition. In
Arbab, F., Sirjani, M., eds.: FSEN 2007. Volume 4767 of Lecture Notes in Computer
Science., Springer-Verlag, Berlin (2007) 207–222

34. Castagna, G., Gesbert, N., Padovani, L.: A Theory of Contracts for Web Services.
SIGPLAN Not. 43(1) (2008) 261–272

35. Basten, T., Aalst, W.: Inheritance of Behavior. Journal of Logic and Algebraic
Programming 47(2) (2001) 47–145

36. Glabbeek, R., Weijland, W.: Branching Time and Abstraction in Bisimulation
Semantics. Journal of the ACM 43(3) (1996) 555–600

37. Aalst, W., Lohmann, N., Massuthe, P., Stahl, C., Wolf, K.: From Public Views
to Private Views: Correctness-by-Design for Services. In Dumas, M., Heckel, H.,
eds.: Proceedings of the 4th International Workshop on Web Services and Formal
Methods (WS-FM 2007). Volume 4937 of Lecture Notes in Computer Science.,
Springer-Verlag, Berlin (2008) 139–153

38. Gierds, C., Mooij, A., Wolf, K.: Specifying and generating behavioral service
adapters based on transformation rules. Preprints CS-02-08, Institut fur Infor-
matik, Universitat Rostock (2008)

39. Benatallah, B., Casati, F., Grigori, D., Motahari Nezhad, H.R., Toumani, F.: De-
veloping Adapters for Web Services Integration. In: Proc. CAiSE. Volume 3520 of
LNCS. (2005) 415–429

40. Bracciali, A., Brogi, A., Canal, C.: A formal approach to component adaptation.
Journal of Systems and Software 74(1) (2005) 45–54

41. Brogi, A., Canal, C., Pimentel, E., Vallecillo, A.: Formalizing Web Service Chore-
ographies. Electr. Notes Theor. Comput. Sci. 105 (2004) 73–94

42. Brogi, A., Popescu, R.: Automated Generation of BPEL Adapters. In: Proc.
ICSOC. Volume 4294 of LNCS. (2006) 27–39

43. Dumas, M., Spork, M., Wang, K.: Adapt or Perish: Algebra and Visual Notation
for Service Interface Adaptation. In: Proc. BPM. Volume 4102 of LNCS., Springer
(2006) 65–80

44. Motahari Nezhad, H., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-
automated adaptation of service interactions. In: Proc. WWW. (2007) 993–1002

45. Brogi, A., Canal, C., Pimentel, E.: On the semantics of software adaptation.
Science of Computer Programming 61 (2006) 136–151

46. Mooij, A., Voorhoeve, M.: Proof techniques for adapter generation. In: Proc.
WS-FM. (2008)

47. Lohmann, N., Massuthe, P., Wolf, K.: Behavioral constraints for services. In:
Proceedings of Business Process Management. Volume 4714 of Lecture Notes in
Computer Science., Springer-Verlag, Berlin (2007) 271–287

48. Canal, C., Poizat, P., Salaün, G.: Model-based adaptation of behavioral mismatch-
ing components. IEEE Transactions on Software Engineering 34(4) (2008) 546–563

49. Mateescu, R., Poizat, P., Salaün, G.: Adaptation of service protocols using process
algebra and on-the-fly reduction techniques. In: Proc. ICSOC. (2008) 84–99

50. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting WS-
BPEL processes using flexible model generation. Data & Knowledge Engineering
64(1) (2008) 38–54

51. Lohmann, N., Kleine, J.: Fully-automatic Translation of Open Workflow Net Mod-
els into Human-readable Abstract BPEL Processes. In: Proc. Modellierung. Vol-
ume P-127 of Lecture Notes in Informatics (LNI). (2008) 57–72

52. Massuthe, P., Serebrenik, A., Sidorova, N., Wolf, K.: Can I find a partner? Unde-
cidablity of partner existence for open nets. Information Processing Letters 108(6)
(2008) 374–378

53. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Logic
synthesis of asynchronous controllers and interfaces. Advanced Microelectronics.
Springer-Verlag (2002)

