Part IV

Techniques for Process Design

]_2 Process Mining

W.M.P. van der Aalst and A.J.M.M. Weijters

Department of Technology Management, Eindhoven University of Tech-
nology, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.

12.1 INTRODUCTION

ToDo: Check changes and do a final pass through the paper for
consistency and typos.

The basic idea of process mining is to extract knowledge from event logs
recorded by an information system. Until recently, the information in these
event logs was rarely used to analyze the underlying processes. Process min-
ing aims at improving this by providing techniques and tools for discovering
process, control, data, organizational, and social structures from event logs.
Fuelled by the omnipresence of event logs in transactional information systems
(cf. WFM, ERP, CRM, SCM, and B2B systems), process mining has become
a vivid research area [4, 5]. In this chapter we provide an overview of process
mining techniques and tools and discuss one algorithm (the « algorithm) in
detail.

As explained in Chapter 1 many information systems have become process-
aware. This awareness can be used in various ways, e.g., the process-aware
information system may enforce a specific way of working but may also just
monitor the process and suggest alternative ways of working. Workflow Man-
agement (WFM) systems such as Staffware, IBM MQSeries, COSA, etc. (cf.
Chapter 3) can be used to enforce a specific way of working but may also allow
for predefined choices based on human judgment, properties of the case being
handled, or a changing context. Case Handling (CH) systems such as FLOWer
(cf. Chapter 19) allow for more flexibility by enabling alternative paths that
are implicitly defined (e.g. the ability to skip, rollback, or change the order of
activities). Both for WFM and CH systems there is an explicit process model
that is actively used to support the process. In many other process-aware
systems the process model plays a less explicit role. For example, although
ERP (Enterprise Resource Planning) systems such as SAP, PeopleSoft, Baan,

iii

iv PROCESS MINING

and Oracle offer a workflow component, process models are often hard-coded
or used in a passive way. SAP supports a wide variety of processes. Parts of
these processes are hard-coded in the software while other parts of the pro-
cess are only described in so-called reference models. These reference models
describe how people should use the system. While process models in a WFM
are used actively, these reference models are only used passively. Another ex-
ample is a Hospital Information System (HIS) supporting clinical guidelines.
These guidelines describe the treatment of a patient having a specific health
problem and can be used in an active way (e.g., automatically suggest ac-
tions to the medical staff) or a passive way (e.g., the medical staff can consult
the clinical guideline when needed). Other process-aware information systems
such as CRM (Customer Relationship Management) software, SCM (Supply
Chain Management) systems, B2B (Business to Business) applications, etc.
may use process models actively or passively and these models may be hard-
coded in the software, implicit (as in a CH system), or explicit (as in a WFM
system). Despite the different ways in which models are used, most of these
systems log events in some way. In this chapter, we do not focus on the design
of these models but instead we focus on techniques for monitoring enterprise
information systems (i.e., WFM, ERP, CRM, SCM-like systems).

As mentioned, many of today’s enterprise information systems store rel-
evant events in some structured form. For example, workflow management
systems typically register the start and completion of activities [2]. ERP
systems like SAP log all transactions, e.g., users filling out forms, changing
documents, etc. Business-to-business (B2B) systems log the exchange of mes-
sages with other parties. Call center packages but also general-purpose CRM
systems log interactions with customers. These examples show that many sys-
tems have some kind of event log often referred to as “history”, “audit trail”,
“transaction log”, etc. [4, 7, 10, 16]. The event log typically contains informa-
tion about events referring to an activity and a case. The case (also named
process instance) is the “thing” which is being handled, e.g., a customer or-
der, a patient in a hospital, a job application, an insurance claim, a building
permit, etc. The activity (also named task, operation, action, or work-item)
is some operation on the case. Typically, events have a time stamp indicating
the time of occurrence. Moreover, when people are involved, event logs will
typically contain information on the person executing or initiating the event,
i.e., the originator. Based on this information several tools and techniques for
process mining have been developed [1, 3, 6, 7, 8, 11, 12, 14, 16, 19].

It is important to note that all enterprise information systems allow for
some form of freedom and that the system is not able to control the entire
process. Even in a WFM system there is some degree of freedom, e.g., work
items are not allocated to a single user but to a group of users, the routing
may be determined by the user or by the arrival of external triggers (e.g.,
a cancellation by the customer), etc. Note that a WFM cannot control its
environment, e.g., if work is offered to a user, then the user will determine
when and how to perform it. Other systems typically offer even more freedom.

INTRODUCTION v

In many systems the user can deviate from the predefined process model,
e.g., in an ERP system the user does not need to follow the reference model
completely (it is just a guideline). The fact that all systems allow for some
form of freedom makes it interesting to see how people actually work. This
motivates the use of process mining techniques as discussed in this chapter.

Process mining is useful for at least two reasons. First of all, it could be
used as a tool to find out how people and/or procedures really work, i.e., pro-
cess discovery. Consider for example processes supported by an ERP system
like SAP (e.g., a procurement process). Such a system logs all transactions
but does not (completely) enforce a specific way of working. In such an envi-
ronment, process mining could be used to gain insight in the actual process.
Another example would be the flow of patients in a hospital. Note that in such
an environment all activities are logged but information about the underlying
process is typically missing. In this context it is important to stress that man-
agement information systems typically provide information about key perfor-
mance indicators like resource utilization, flow times, and service levels but
not about the underlying business processes (e.g., causal relations, ordering
of activities, etc.). Second, process mining could be used for Delta analysis,
i.e., comparing the actual process with some predefined process. Note that in
many situations there is a descriptive or prescriptive process model. Such a
model specifies how people and organizations are assumed/expected to work.
By comparing the descriptive or prescriptive process model with the discov-
ered model, discrepancies between both can be detected and used to improve
the process. Consider for example the so-called reference models in the con-
text of SAP. These models describe how the system should be used. Using
process mining it is possible to verify whether this is the case. In fact, process
mining could also be used to compare different departments/organizations
using the same ERP system.

Process mining can be used to monitor coordination in enterprise infor-
mation systems. Some of the coordination is done by humans while other
coordination tasks are done by software. As indicated, similar interaction
patterns occur at the level of software components, business processes, and
organizations. Therefore, process mining can be done at many levels.

The topic of process mining is related to management trends such as Busi-
ness Process Reengineering (BPR, see also Chapter 10), Business Intelligence
(BI), Business Process Analysis (BPA), Continuous Process Improvement
(CPI), and Knowledge Management (KM). Process mining can be seen as
part of the BI, BPA, and KM trends. Moreover, process mining can be used
as input for BPR and CPI activities. Note that process mining is not a tool
to (re)design processes. The goal is to understand what is really going on.
Despite the fact that process mining is not a tool for designing processes, it
is evident that a good understanding of the existing processes is vital for any
redesign effort.

The remainder of this chapter is organized as follows. In Section 12.2
we introduce process mining. Using an example, we illustrate the concept

vi PROCESS MINING

of process mining, discuss the information required to do process mining,
and show the various perspectives that can be mined (process perspective,
organizational perspective, and case perspective). Section 12.3 focuses on
the process perspective and provides a concrete algorithm: The a-algorithm.
In Section 12.4 we discuss some limitations of the a-algorithm and possible
solutions. To conclude, we provide exercises in Section 12.6.

12.2 PROCESS MINING: AN OVERVIEW

The goal of process mining is to extract information about processes from
transaction logs [4]. We assume that it is possible to record events such that
(i) each event refers to an activity (i.e., a well-defined step in the process), (ii)
each event refers to a case (i.e., a process instance), (iii) each event can have
a performer also referred to as originator (the person executing or initiating
the activity), and (iv) events have a time stamp and are totally ordered.
Table 12.1 shows an example of a log involving 19 events, 5 activities, and 6
originators. In addition to the information shown in this table, some event
logs contain more information on the case itself, i.e., data elements referring
to properties of the case. For example, the case handling system FLOWer
logs every modification of some data element.

Event logs such as the one shown in Table 12.1 are used as the starting
point for mining. We distinguish three different perspectives: (1) the process
perspective, (2) the organizational perspective and (3) the case perspective.
The process perspective focuses on the control-flow, i.e., the ordering of activ-
ities. The goal of mining this perspective is to find a good characterization
of all possible paths, e.g., expressed in terms of a Petri net [15] (cf. Chapter
7) or Event-driven Process Chain (EPC) [13, 12] (cf. Chapter 6). The or-
ganizational perspective focuses on the originator field, i.e., which performers
are involved and how they are related. The goal is to either structure the or-
ganization by classifying people in terms of roles and organizational units or
to show relations between individual performers (i.e., build a social network
[17]). The case perspective focuses on properties of cases. Cases can be char-
acterized by their path in the process or by the originators working on a case.
However, cases can also be characterized by the values of the corresponding
data elements. For example, if a case represent a replenishment order it is
interesting to know the supplier or the number of products ordered.

The process perspective is concerned with the “How?” question, the orga-
nizational perspective is concerned with the “Who?” question, and the case
perspective is concerned with the “What?” question. To illustrate the first
two consider Figure 12.1. The log shown in Table 12.1 contains information
about five cases (i.e., process instances). The log shows that for four cases
(1, 2, 3, and 4) the activities A, B, C, and D have been executed. For the
fifth case only three activities have been executed: activities A, E, and D.
Each case starts with the execution of A and ends with the execution of D.

PROCESS MINING: AN OVERVIEW vii

case id activity id originator time stamp

case 1 activity A John 9-3-2004:15.01
case 2 activity A John 9-3-2004:15.12
case 3 activity A Sue 9-3-2004:16.03
case 3 activity B Carol 9-3-2004:16.07
case 1 activity B Mike 9-3-2004:18.25
case 1 activity C John 10-3-2004:9.23
case 2 activity C Mike 10-3-2004:10.34
case 4 activity A Sue 10-3-2004:10.35
case 2 activity B John 10-3-2004:12.34
case 2 activity D Pete 10-3-2004:12.50
case b activity A Sue 10-3-2004:13.05
case 4 activity C Carol 11-3-2004:10.12
case 1 activity D Pete 11-3-2004:10.14
case 3 activity C Sue 11-3-2004:10.44
case 3 activity D Pete 11-3-2004:11.03
case 4 activity B Sue 11-3-2004:11.18
case b activity E Clare 11-3-2004:12.22
case b activity D Clare 11-3-2004:14.34
case 4 activity D Pete 11-3-2004:15.56

Table 12.1 An event log.

AND AND
-split -join
O O

/
/
i E T
| 1_|J| —

(a) The confrol-flow structure f{pressed in term§_vpf»a”P/e:tri net.

| T

7 John Sue

i -
role X role Y roleZ / \
)// / \ \ Mike Clare:>
John Sue Mike Carol Pete Clare Pete Carol

(b) The organizational structure expressed in

terms of an activity-role-performer diagram. (c) A sociogram based on transfer of work.

Fig. 12.1 Some mining results for the process perspective (a) and organizational (b
and c¢) perspective based on the event log shown in Table 12.1.

viii PROCESS MINING

If activity B is executed, then also activity C is executed. However, for some
cases activity C is executed before activity B. Based on the information shown
in Table 12.1 and by making some assumptions about the completeness of the
log (i.e., assuming that the cases are representative and a sufficient large sub-
set of possible behaviors has been observed), we can deduce the process model
shown in Figure 12.1(a). The model is represented in terms of a Petri net. The
Petri net starts with activity A and finishes with activity D. These activities
are represented by transitions. After executing A there is a choice between
either executing B and C concurrently (i.e., in parallel or in any order) or
just executing activity E. To execute B and C in parallel two non-observable
activities (AND-split and AND-join) have been added. These activities have
been added for routing purposes only and are not present in the event log.
Note that for this example we assume that two activities are concurrent if they
appear in any order. By distinguishing between start events and completion
events for activities it is possible to explicitly detect parallelism.

Figure 12.1(a) does not show any information about the organization, i.e.,
it does not use any information concerning the people executing activities.
Information about performers of activities however, is included in Table 12.1.
For example, we can deduce that activity A is executed by either John or Sue,
activity B is executed by John, Sue, Mike or Carol, C is executed by John,
Sue, Mike or Carol, D is executed by Pete or Clare, and E is executed by
Clare. We could indicate this information in Figure 12.1(a). The information
could also be used to “guess” or “discover” organizational structures. For
example, a guess could be that there are three roles: X, Y, and Z. For the
execution of A role X is required and John and Sue have this role. For the
execution of B and C role Y is required and John, Sue, Mike and Carol have
this role. For the execution of D and E role Z is required and Pete and
Clare have this role. For five cases these choices may seem arbitrary but for
larger data sets such inferences capture the dominant roles in an organization.
The resulting “activity-role-performer diagram” is shown in Figure 12.1(b).
The three “discovered” roles link activities to performers. Figure 12.1(c)
shows another view on the organization based on the transfer of work from
one individual to another, i.e., not focus on the relation between the process
and individuals but on relations among individuals (or groups of individuals).
Consider for example Table 12.1. Although Carol and Mike can execute the
same activities (B and C), Mike is always working with John (cases 1 and 2)
and Carol is always working with Sue (cases 3 and 4). Probably Carol and
Mike have the same role but based on the small sample shown in Table 12.1
it seems that John is not working with Carol and Sue is not working with
Carol.! These examples show that the event log can be used to derive relations
between performers of activities, thus resulting in a sociogram. For example,

1Clearly the number of events in Table 12.1 is too small to establish these assumptions
accurately. However, real event logs will contain thousands or more events.

PROCESS MINING: AN OVERVIEW ix

it is possible to generate a sociogram based on the transfers of work from one
individual to another as is shown in Figure 12.1(c). Each node represents one
of the six performers and each arc represents that there has been a transfer
of work from one individual to another. The definition of “transfer of work
from A to B” is based on whether, in the same case, an activity executed by
A is directly followed by an activity executed by B. For example, both in case
1 and 2 there is a transfer from John to Mike. Figure 12.1(c) does not show
frequencies. However, for analysis purposes these frequencies can added. The
arc from John to Mike would then have weight 2. Typically, we do not use
absolute frequencies but weighted frequencies to get relative values between
0 and 1. Figure 12.1(c) shows that work is transferred to Pete but not vice
versa. Mike only interacts with John and Carol only interacts with Sue. Clare
is the only person transferring work to herself.

Besides the “How?” and “Who?” question (i.e., the process and organi-
zation perspectives), there is the case perspective that is concerned with the
“What?” question. Figure 12.1 does not address this. In fact, focusing on
the case perspective is most interesting when also data elements are logged
but these are not listed in Table 12.1. The case perspective looks at the case
as a whole and tries to establish relations between the various properties of
a case. Note that some of the properties may refer to the activities being
executed, the performers working on the case, and the values of various data
elements linked to the case. Using clustering algorithms it would for example
be possible to show a positive correlation between the size of an order or its
handling time and the involvement of specific people.

Orthogonal to the three perspectives (process, organization, and case), the
result of a mining effort may refer to logical issues and/or performance issues.
For example, process mining can focus on the logical structure of the process
model (e.g., the Petri net shown in Figure 12.1(a)) or on performance issues
such as flow time. For mining the organizational perspective, the emphasis
can be on the roles or the social network (cf. Figure 12.1(b) and (c)) or on
the utilization of performers or execution frequencies. To illustrate the fact
that the three perspectives and the type of question (logical or performance
oriented) are orthogonal, some examples are given in Table 12.2.

To address the three perspectives and the logical and performance issues we
have developed a set of tools including EMiT [1], Thumb [19], and MinSoN
[3]. These tools share a common XML format. Recently, the functionality
of these three tools have been merged into the ProM Framework. The ProM
tool not only supports variants of the a-algorithm: It also supports alternative
approaches, e.g., approaches based on genetic algorithms. For more details
we refer to http://www.processmining.org.

X PROCESS MINING

perspective

examples of
logical properties

examples of
performance properties

process perspec-
tive

organisational
perspective

case perspective

activity A is always fol-
lowed by B; activities C
and D may be executed in
parallel

John and Mary are in the
same team; Pete is the
manager of department D

cases of more than 5000
euro are handled by John;
activity A is only executed
for private customers

the average processing
time of activity A is 35
minutes; activity A is
executed for 80 percent of
the cases

John handles on average
30 cases per day; Mary
and Pete work together on
50 percent of the cases

80 percent of cases of
more than 5000 euro are
handled within 2 days;
the average flow time of

cases handled by John and
Mary is 2 weeks

Table 12.2 Some examples of properties that may be investigated using
process mining.

12.3 PROCESS MINING WITH THE o-ALGORITHM

In this chapter we focus on the process perspective. In fact, we consider a
specific algorithm: the a-algorithm. Before describing the algorithm, we first
discuss the input format.

12.3.1 Input

Table 12.1 shows an event log. The basic algorithm only considers the case id
and the activity id and not the timestamp and originator of the event. For the
a-algorithm the ordering of events within a case is relevant while the ordering
of events amongst cases is of no importance. In Table 12.1 it is important
that for case 1 activity A is followed by B within the context of case 1 and
not that activity A of case 1 is followed by activity A of case 2. Therefore,
we define an event log as follows. Let T be a set of activities. o € T* is
an event trace, i.e., an arbitrary sequence of activity identifiers. W C T*
is an event log, i.e., a set of event traces. Note that since W is a set and
not a multiset (bag), every event trace can appear only once in a log. In an
event log like the one shown in Table 12.1 this is not the case. However, for
inferring the structure of a process with the « algorithm the frequency of an
event trace is irrelevant, i.e., it does not add information. In more practical

PROCESS MINING WITH THE a-ALGORITHM xi

mining tools as presented in Section 12.4.2 frequencies become important. If
we use this notation to describe the log shown in Table 12.1 we obtain the
set W ={ABCD, ACBD, AED}. Note that cases 1 and 3 have event trace
ABCD, cases 2 and 4 have trace ACBD, and case 5 is the only one having
trace AED. Also note that when dealing with noise, frequencies are of the
utmost importance, cf. Section 12.4.2 and [18]. However, for the moment we
abstract from noise and simply look at the presence of a trace rather than its
frequency.

To find a process model on the basis of an event log, the log should be ana-
lyzed for causal dependencies, e.g., if an activity is always followed by another
activity it is likely that there is a causal relation between both activities. To
analyze these relations we introduce the following notations. Let W be an
event log over T, i.e., W CT*. Let a,b € T:

e a >y b iff there is a trace o = tytots...t, and i € {1,...,n — 1} such
that c € W and t; =a and t;41 = b,

e a—wbiff a>w band b fw a,
o aftwb iff a Aw b and b #w a, and
e allwb iff a >w b and b >y a.

Consider the event log W = {ABCD, ACBD, AED} (i.e., the log shown in
Table 12.1). Relation >y describes which activities appeared in sequence
(one directly following the other). Clearly, A >w B, A >y C, A >y E,
B>y C,B>y D,C >y B,C >y D, and E >y D. Relation —y can be
computed from >y and is referred to as the (direct) causal relation derived
from event log W. A -w B, A »w C, A »w E, B -»w D, C —-w D,
and E —w D. Note that B /Ay C because C >w B. Relation ||y suggests
concurrent behavior, i.e., potential parallelism. For log W activities B and
C seem to be in parallel, i.e., B||wC and C||wB. If two activities can follow
each other directly in any order, then all possible interleavings are present
and therefore they are likely to be in parallel. Relation #y gives pairs of
transitions that never follow each other directly. This means that there are
no direct causal relations and parallelism is unlikely.

12.3.2 The algorithm

The « algorithm uses notions such as >w, —w, |lw, and #w to obtain
information about the underlying process. The « algorithm represents the
discovered process in terms of a Petri net. Let W be an event log over T.
(W) is defined as follows.

1. Tw ={t € T | oewt € o} (the set of activities appearing in the log),

2. Ty ={t €T | Joewt = first(c)} (the set of initial activities),

3. To={teT | J,ewt = last(o)} (the set of final activities),

xii

PROCESS MINING

X ={(AB)|ACTw N B C Tw AN VecaVbepa —w b A

Var.ascAC1Fwaz A Vo, peBbi#Fwbe} (all causality relations),

Y={(A,B)c X |Vu,pyexACA NBCB = (A,B)=(A,B)}
(only the minimal causality relations),

Pw = {pa,p) | (A, B) € Y}U{iw,ow} (the set of places in the resulting
Petri net, p4,p) is a place connecting transitions in A with transitions
in B, iy is the unique input place denoting the start of the process, and
ow is the unique output place denoting the end of the process),

FW = {(avp(A,B)) | (AvB) €Y Nac A} U {(p(A,B)vb) | (AvB) €
Y A b e B} U{(iw,t) |t € T} U{(t,ow) | t € To} (the set of
connecting arcs in the resulting Petri net), and

a(W) = (Pw,Tw, Fw) (the resulting Petri net with places Py, transi-
tions Ty, and arcs Fy).

The « algorithm transforms a log W into a Petri net (Pw,Tw, Fw). The
algorithm only uses basic mathematics, the relations >w, —w, |lw, and #w,
and the functions first and last to get the first and last element from a trace.

To illustrate the « algorithm we show the result of each step using the log
W ={ABCD, ACBD, AED} (i.e., a log like the one shown in Table 12.1):

1.
2
3.
4. X ={({A},{B}), ({4}, {C}), {A},{E}),({B}, {D}),({C},{D}),

® N o o

TW - {A,B,C,D,E},

LTy = {4},

TO = {D}a

({E},{D}), (AL {B, E}), {A}L{C, E}), ({B, E}),({D}), {C, E}),
{Dh}.

YV ={({A},{B, E}),{A}, {C, EY), {B, E},{D}), {C, E}, {D})},
Pw = {iw,ow,p(a}{B.E}) P({a}{C.B})> P{B,E}{D})» P({C.E}{D}) };
Fw = {(iw, A), (A, p(a},,EY)): (P A}.(B.EY): B) .., (D,0ow)}, and
a(W) = (Pw,Tw, Fw) (as shown in Figure 12.2).

It is interesting to note that «(W') shown in Figure 12.2 differs from the
Petri net shown in Figure 12.1. This may suggest that the result is not cor-
rect. However, from a behavioral point of view Figure 12.2 and Figure 12.1(a)
are equivalent if we abstract from the AND-split and AND-join. Note that
every event trace in W = {ABCD, ACBD, AED} can be realized by Fig-
ure 12.2. Also every possible firing sequence corresponds to an event trace
in W. Therefore, we conclude that although Figure 12.2 and Figure 12.1(a)
differ, the « algorithm is able to correctly mine the log shown in Table 12.1.

PROCESS MINING WITH THE a-ALGORITHM xiii

@—»;\ c D;»©

Fig. 12.2 Another process model corresponding to the event log shown in Table 12.1.
In Section 12.4 we will discuss the problem of “invisible activities”, i.e., activities that
are not recorded in the log.

12.3.3 How does it work?

The fact that the « algorithm is able to “discover” Figure 12.2 based on the
event log W = {ABCD, ACBD, AED} triggers the question: How does it
work? To understand the basic idea of the « algorithm consider Figure 12.3.
The algorithm assumes that two activities z and y (i.e, transitions) are con-
nected through some place if and only if z —w y (Figure 12.3(a)). If activities
x and y are concurrent, then they can occur in any order, i.e., x may be directly
followed by % or vice versa. Therefore, the o algorithm assumes activities x
and y are concurrent if and only if x|y y. This is illustrated by Figure 12.3(b).
If x -w y and x —w z, then there have to be places connecting x and y
on the one hand and z and z on the other hand. This can be one place or
multiple places. If y||w 2, then there should be multiple places to enable con-
currency (cf. Figure 12.3(b)). If y#w z, then there should be a single place to
ensure that only one branch is chosen (cf. Figure 12.3(c)). Note that in the
latter case y and z never follow one another directly as expressed by y#w 2z
(i.e., y #w z and z #w y). Figure 12.3(d) shows the AND-join (i.e., counter-
part of the AND-split shown in Figure 12.3(b)) and Figure 12.3(e) shows the
XOR-join (i.e., counterpart of the XOR-split shown in Figure 12.3(c)).

The basic relations shown in Figure 12.3 are the starting point for the «
algorithm. Note that the relations do not always hold, i.e., one can think
of them as heuristics. For example, it is assumed that the log is complete
with respect to >y . (Note that —w, |lw, and #w are derived from >y .)
This implies that if one activity can be followed by another this should hap-
pen at least once in the log. We will return to the issue of completeness in
Section 12.4.2.

xiv PROCESS MINING

XY, X>Z,
and y||z

XY, X>Z,
and y#z

X=>Z, Y>Z,
and x||y

X->Z, y~>Z,
and x#y

Fig. 12.3 Relating the log-based relations >y, —w, ||w, and #w to basic Petri-
net constructs.

PROCESS MINING WITH THE a-ALGORITHM b a%

12.3.4 Examples

Figure 12.4 is an example of a Petri in which an AND-split and OR-split are
embedded in an AND-split. Given a complete event log, this kind of nesting
will not harm the « algorithm in rediscovering the original Petri net.

Fig. 12.4 An example of a Petri net with nested AND/XOR-splits correctly mined
by the « algorithm.

In Figure 12.5 an example of a Petri net with loops is given. Remark that
an event log with all possible event traces of this Petri net is an infinite set.
However, a complete event log does not need to contain all possible traces.
A sufficiently large subset with, on a binary level (i.e. with respect to >)
all possible pairs is sufficient. If we have such a complete event log, the «
algorithm will, without any problem, correctly rediscover the Petri net of
Figure 12.5.

Fig. 12.5 Example of a more complex Petri correctly mined by the « algorithm.

The Petri net of the last example (Figure 12.6) is less abstract and spec-
ifies the interactions between a contractor and a subcontractor. First, the
contractor sends an order to the subcontractor. Then, the contractor sends a
detailed specification to the subcontractor and the subcontractor sends a cost
statement to the contractor. Based on the specification the subcontractor
manufactures the desired product and sends it to the contractor. There is no

xvi PROCESS MINING

clear owner of the resulting interaction process, but the combined information
registered by both parties contains enough information to mine the process
(i.e. the process itself and other aspects of it).

recieve cost process cost
statement statement

handle
product
prepare
transport

create
specification

recieve order prosess create cost) ship product
specification statement _/

Fig. 12.6 The interaction between contractor and subcontractor.

12.4 LIMITATIONS OF THE o-APPROACH AND POSSIBLE
SOLUTIONS

In this paper, we only consider the basic « algorithm to illustrate the concept
of process mining. The « algorithm focuses exclusively on the process per-
spective (i.e., control-flow). As indicated in Section 12.2, process mining can
be used to analyze other perspectives (to answer “Who?” and “What?” ques-
tions). Despite its focus, the basic « algorithm is still unable to successfully
discover some processes. In this section we identify two classes of problems:
logical problems and problems resulting from noise (incorrectly logged data),
exceptions (rare events not corresponding to the “normal” behavior), and
incompleteness (i.e., too few observations).

12.4.1 Logical problems

In [6] a formal characterization is given for the class of nets that can be mined
correctly. It turns out that assuming a weak notion of completeness (i.e., if
one activity can be followed by another this should happen at least once in the
log), any so-called SWF-net without short loops and implicit places can be
mined correctly. SWF-nets are Petri nets with a single source and sink place
satisfying some additional syntactical requirements such as the free-choice
property. In this chapter, we will not elaborate on formal characterizations
of the class of processes that can be successfully mined. Instead, we focus on
the practical limitations of the « algorithm, i.e., the problems when dealing
with invisible activities, duplicate activities, short loops, etc.

12.4.1.1 Invisible activities One of the basic assumptions of process
mining is that each event (i.e., the occurrence of an activity for a specific case)
is registered in the log. Clearly, it is not possible to find information about ac-

LIMITATIONS OF THE o-rAPPROACH AND POSSIBLE SOLUTIONS xvii

tivities that are not recorded. However, given a specific language it is possible
to register that there is a so-called “hidden activity”. Consider, for example,
Table 12.1 where A, B, and C are visible but the AND-split in-between A, and
B and C is not. Clearly, the basic a algorithm is unable to discover activities
not appearing in the log. Therefore, the Petri net shown in Figure 12.2 is
different from the Petri net shown in Figure 12.1(a). However, both nets are
equivalent if we abstract from the AND-split and AND-join. Unfortunately,
this is not always the case. Consider for example Figure 12.2 where activity
E is not visible. The resulting log would be W = {ABCD, ACBD, AD}
and the « algorithm would be unable to construct the correct model, i.e.,
a(W) = (liw, ow, P({a},{B})s P(HA}{CY: PUBYLIDY): PUCYIDY): P({ALIDY]
{A.B.C, D}, {(iw,A), (A, pay) ---» (A,pqaypy)s (Payp}), D)
(D,ow)}). The resulting net is shown in Figure 12.7, i.e., the original net
shown in Figure 12.2 without E but with an additional place connecting A
and D. Note that the resulting model does not allow for the event trace AD.

AT TO

Ol

-0

Fig. 12.7 If activity E is not visible, the algorithm returns an incorrect model be-
cause it does not allow for AD.

12.4.1.2 Duplicate activities The problem of duplicate activities refers
to the situation that one can have a process model (e.g., a Petri net) with
two nodes referring to the same activity. Suppose that in Table 12.1 and
Figure 12.1 activity E is renamed to B (see Figure 12.8). Clearly, the modified
log could be the result of the modified process model. However, it becomes
very difficult to automatically construct a process model from Table 12.1 with
E renamed to B because it is not possible to distinguish the“B” in case 5 from
the “B’s” in the other cases. Note that the presence of duplicate activities is
related to hidden activities. Many processes with hidden activities but with no
duplicate activities can be modified into equivalent processes with duplicate
activities but with no hidden activities.

12.4.1.3 Non-free-choice constructs Free-choice Petri nets are Petri
nets where there are no two transitions consuming from the same input place
but where one has an input place which is not an input place of the other [9].
This excludes the possibility to merge choice and synchronization into one

xviii PROCESS MINING

Fig. 12.8 A process model with duplicate activities.

construct. Free-choice Petri nets are a well-known and widely used subclass
of Petri nets. However, many processes cannot be expressed in terms of a
free-choice net. Unfortunately, most of the mining techniques (also those
that are not using Petri nets) assume process models corresponding to the
class of free-choice nets. Non-free-choice constructs can be used to represent
“controlled choices”, i.e., situations where the choice between two activities
is not determined inside some node in the process model but may depend
on choices made in other parts of the process model. Clearly, such non-local
behavior is difficult to mine for mining approaches primarily based on binary
information (a >w b) and may require many observations.

Fig. 12.9 A process model with a non-free-choice construct.

Figure 12.1 is free-choice since synchronization (activity D) is separated
from the choice between B and C, and E. Figure 12.9 shows a non-free-choice
construct. After executing activity C there is a choice between activity D and
activity E. However, the choice between D and E is “controlled” by the earlier
choice between A and B. Note that activities D and E are involved in a choice
but also synchronize two flows. Clearly such constructs are difficult to mine
since the choice is non-local and the mining algorithm has to “remember”
earlier events.

To illustrate that there are also non-free-choice constructs that can be
mined correctly using the « algorithm we consider Figure 12.10. Now the
choice can be detected because of the two new activities X and Y. Note that
X may be directly followed by D but not by E. Hence the place in-between
X and D is discovered.

LIMITATIONS OF THE a-APPROACH AND POSSIBLE SOLUTIONS xix

Fig. 12.10 A process model with a non-free-choice construct that can be mined
correctly.

12.4.1.4 Short loops In a process it may be possible to execute the same
activity multiple times. If this happens, this typically refers to a loop in the
corresponding model. Figure 12.11 shows an example with a loop. After
executing activity B, activity C can be executed arbitrarily many times, i.e.,
possible event sequences are BD, BCD, BCCD, BCCCD, etc. Loops like the
one involving activity C are easy to discover. However, loops can also be
used to jump back to any place in the process. For more complex processes,
mining loops is far from trivial since there are multiple occurrences of the
same activity in a given case. Some techniques number each occurrence, e.g.,
B1 C1 C2 C3 D1 denotes BCCCD. These occurrences are then mapped onto
a single activity.

——0—{
I

o]
L2

Fig. 12.11 A process model with a loop.

As illustrated by Figure 12.11 there is a relation between loops and du-
plicate activities. In Figure 12.11 activity A is executed multiple times (i.e.,
twice) but is not in a loop. Many mining techniques make some assumptions
about loops which restricts the class of processes that can be mined correctly.

The logical problems described all apply to the a algorithm. Some of the
problems can be resolved quite easily by using a more refined algorithm. Other
problems are more fundamental and indicate theoretical limits [6].

XX PROCESS MINING

12.4.2 Noise, exceptions and incompleteness

The formal approach presented in the preceding section presupposes perfect
information: (i) the log must be complete (i.e., if an activity can follow another
activity directly, the log should contain an example of this behavior) and (ii)
we assume that there is no noise in the log (i.e., everything that is registered
in the log is correct). However, in practical situations logs are rarely complete
and/or noise free. Especially the differentiation between errors, low frequency
activities, low frequency activity sequences, and exceptions is problematic.
Therefore, in practice, it becomes more difficult to decide if between two
activities say A and B, one of the three basic relations (i.e., A —w B, A#w B,
or A||lw B) holds. For instance the causality relation as used in the a-algorithm
(A —w B) only holds if and only if in the log there is a trace in which A is
directly followed by B (i.e., the relation A >y B holds) and there is no trace
in which B is directly followed by A (i.e., not B >y A). However, in a noisy
situation one erroneous example can completely mess up the derivation of a
right conclusion. Even if we have thousands of log traces in which A is directly
followed by B, then one B >y A example based on an incorrect registration,
will prevent a correct conclusion. As noted before, frequency information is
not used in the formal approach. For this reason heuristic mining techniques
are developed which are less sensitive to noise and the incompleteness of logs.

As an illustration of a heuristic approach we shortly discuss the ideas to
discover the causality relation as implemented in the heuristic mining tool
Little Thumb [18]. In this approach a frequency based metric is used to
indicate how certain we are that there is truly a causal relation between two
events A and B (notation A =y B). The calculated = values between
the events of an event log are used in a heuristic search for the right relations
between events (i.e. A >y B, A#w B or A|wB). Below we first define the
=w metric. After that we will illustrate how we can use this metric in a
simple heuristic in which we search for reliable causal relations (the A —yw B
relation).

Let W be an event log over T, and a,b € T :

e |a > b| is the number of times a >w b occurs in W,

|a>W b|—|b>w CL|
la >w b| + b >w a| + 1

0(1,=>wa<

First, remark that the value of a =y b is always between -1 and 1. Some
simple examples demonstrate the rationale behind this definition. If we use
this definition in the situation that, in 5 traces, activity A is directly followed
by activity B but the other way around never occurs, the value of A =y B =
5/6 = 0.833 indicating that we are not completely sure of the causality relation
(only 5 observations possibly caused by noise). However if there are 50 traces
in which A is directly followed by B but the other way around never occurs,

LIMITATIONS OF THE a-APPROACH AND POSSIBLE SOLUTIONS xxi

the value of A =y B = 50/51 = 0.980 indicates that we are pretty sure of
the causality relation. If there are 50 traces in which activity A is directly
followed by B and noise caused B to follow A once, the value of A =y B is
49/52 = 0.94 indicating that we are pretty sure of a causal relation.

A high A =y B value strongly suggests that there is a causal relation
between activity A and B. But what is a high value, what is a good threshold
to take the decision that B truly depends on A (i.e. A —w B holds)? The
threshold appears sensitive for the amount of noise, the degree of concurrency
in the underlying process, and the frequency of the involved activities.

However, it appears unnecessary to use a threshold value. After all, we
know that each non-initial activity must have at least one other activity that
is its cause, and each non-final activity must have at least one dependent ac-
tivity. Using this information in a heuristic approach we can limit the search
and take the best candidate (with the highest A =y B score). This simple
heuristic helps us enormously in finding reliable causality relations even if
the event log contains noise. As an example we have applied the heuristic to
an event log from the Petri net of Figure 12.1. Thirty event traces are used
(nine for each of the three possible traces and three incorrect traces: ABCED,
AECBD, AD). We first calculate the =-values for all possible activity com-
binations. The result is displayed in the matrix below.

=w| A | B | C | D | E
A | 00 | 0909 | 0.900 | 0.500 | 0.909
B | 00 | 00 | 00]0.909]| 0.0
C | 00 | 00 | 00 |0.900] 00
D |-0.500 | -0.909 | -0.909 | 0.0 | -0.909
E | 00 | 00 | 00]0.909]| 0.0

As an illustration we now apply the basic heuristic on this matrix. We can
recognize the initial activity A, it is the activity without a positive value in
the A-column. For the dependent activity of A we search for the highest value
in row A of the matrix. Both B and E are high (0.909). We arbitrarily choose
B. If we use the matrix to search for the cause for B (the highest value of
the B column) we will again find A as the cause for B. D is the depending
activity of B (D is the highest value of the B row). The result of applying the
same procedure on activity B, C, and E is presented in Figure 12.12; remark
that only the causal relations are depicted in a so called dependency graph.
The numbers in the activity boxes indicate the frequency of the activity, the
numbers on the arcs indicate the reliability of each causal relation and the
numbers on the nodes the frequencies. In spite of the noise, the causal relations
are correctly mined.

The illustrated heuristic procedure is not complete. For example, we need
searching procedures for the other basic relations (i.e. a#wb and al|lwb).

xxii PROCESS MINING

0,909/20 | 0,900/20 0,909/11

B C E
20 20 11

0,909/20 | 0,900/20 0,909/11

D
30

Fig. 12.12 A dependency graph resulting from applying the heuristic approach to
a noisy log based on the Petri-net of Figure 12.1.

Given the correct basic relations we can use the a-algorithm to construct
a Petri net. In [18] the experimental results of such an approach to noisy data
are presented.

12.5 CONCLUSION

This chapter introduced the topic of process mining by first providing an
overview and then zooming in on a specific algorithm for the process perspec-
tive (i.e., control flow): the « algorithm. It is important to realize that this
algorithm only tackles one of the cells shown in Table 12.2 (the top-left one).
For the other cells other approaches are needed. However, even within this
single cell there are many challenges as demonstrated in this chapter. The
wide applicability of process mining makes is worthwhile to tackle problems
such as noise, incompleteness, etc. For more information and to download
mining tools, we refer to http://www.processmining.org.

Acknowledgements

The authors would like to thank Boudewijn van Dongen, Ana Karla Alves
de Medeiros, Minseok Song, Laura Maruster, Eric Verbeek, Monique Jansen-
Vullers, Hajo Reijers, and Peter van den Brand for their on-going work on
process mining techniques and tools at Eindhoven University of Technology.
Parts of this chapter have been based on earlier papers with these researchers.

12.6 EXERCISES

Exercise 12.6.1 Consider the Petri net shown in Figure 12.13.

1.

EXERCISES xxiii

Fig. 12.13 A simple parallel Petri-net.

Determine the event log W with all possible traces.

2. Try to determine a >-complete event log W' with W' a real subset of W

W'cw).

Answer:

1.

2.

6, {ABCDE, ABDCE,ACBDE, ACDBE,ADBCE,ADCBE}.
A example of a complete logis W = {ABCDE, ABDCE, ACDBE, ADCBE}.

Note that this is a real subset.

Exercise 12.6.2 Given an event log W = {AFBCGD,AFCBGD,AED}
use the eight steps of the a algorithm to construct an accompanying Petri net.

Answer:

1. Ty = {A,B,C,D,E,F,G},

2. Ty = {A},

3. Tp = {D}a

4. X ={({A}{F}), {ALAEY), {ALA{E, F}), {F}{B}), {F}A{C}),
(B} {G}), {C}H{G}H, {G}H{D}), {EL{D}), {G, E}, {D})},

5 Y ={({A}{E, F}),{F}{B}), {F},{C}), {B},{G}),
({CHAG}H, ({G, E}{D})},

6. Pw = {iw,ow,p({A},{E,F}) PUFL{B} PUFL{CYH PUBIGY):
PUCYAGHPUG,E}{D} }>

7. Fw = {(iw, A), (A, piray,18,00)s (F, 0y, i80)y (Fspry,iom)s (B, p(iBYy.{61)5
(C,pgcyien), (Gipga,ey,ion)s (B, pya,By,(p}))}, and

8. a(W) = (Pw,Tw, Fw) is the Petri net as shown in Figure 12.1 with

the two non-observable activities AND-split and AND-join replaced by
F and G.

Exercise 12.6.3 Consider the following logW = {ABCDE, ABDCE, ACBDE,
ACDBE, ADBCE, ADCBE} originating from the Petri net of Exercise
12.6.1. Determinate A =w B and B =w C.

xxiv PROCESS MINING

Answer: A =w B=2/(2+0+1) =0.66 and B =w C =(2—-2)/(24+2+1) =
0.0.

Exercise 12.6.4 Given the following event log W = [ABCDE, ABDCE,
ACBDE, ACDBE, ADBCE, ADCBE, ABCDE, ABDCE, ACBDE,
ACDBE, ADBCE, ADCBE) 2 which originated from the Petri net of Ex-
ercise 12.6.2. Follow the heuristic of Subsection 12.4.2 to construct a depen-
dency graph as presented in Figure 12.12.

Answer: First calculate de different =-values for all possible activity combi-
nations.

sw| A| B|] C|D]|E
A |00|08]08]08]00
B |-08]00]00]00]08
C
D

| -0.8] 0.0] 00 | 0.0 |08
| -0.8] 0.0 | 0.0 | 00|08
E | 00 |-0.8]-08]-0.8]0.0

Then use the basic heuristics of Subsection 12.4.2. Each non-initial activ-
ity must have at least one activity that caused it (select the best candidate),
and each non-final activity must have one dependent activity (select the best
candidate). The resulting dependency graph is given be in Figure 12.14.

A
12

0,800/12 | 0,800/12 0,800/12

C D
12 12

0,800/12 | 0,800/12 0,800/12
E

12

Fig. 12.14 The resulting dependency graph.

2To express the multiple appearing of traces we formally have to use the bag or multi set
notation instead of the set notation.

EXERCISES XXV

REFERENCES

1.

10.

W.M.P. van der Aalst and B.F. van Dongen. Discovering Workflow Per-
formance Models from Timed Logs. In Y. Han, S. Tai, and D. Wikarski,
editors, International Conference on Engineering and Deployment of Co-
operative Information Systems (EDCIS 2002), volume 2480 of Lecture
Notes in Computer Science, pages 45—63. Springer-Verlag, Berlin, 2002.

. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models,

Methods, and Systems. MIT press, Cambridge, MA, 2002.

. W.M.P. van der Aalst and M. Song. Mining Social Networks: Uncover-

ing interaction patterns in business processes. In J. Desel, B. Pernici, and
M. Weske, editors, International Conference on Business Process Manage-
ment (BPM 2004), volume 3080 of Lecture Notes in Computer Science,
pages 244-260. Springer-Verlag, Berlin, 2004.

. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm,

and A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Ap-
proaches. Data and Knowledge Engineering, 47(2):237-267, 2003.

. W.M.P. van der Aalst and A.J.M.M. Weijters, editors. Process Mining,

Special Issue of Computers in Industry, Volume 53, Number 3. Elsevier
Science Publishers, Amsterdam, 2004.

. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow

Mining: Discovering Process Models from Event Logs. IEEFE Transactions
on Knowledge and Data Engineering, 16(9):1128-1142, 2004.

. R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from

Workflow Logs. In Sixth International Conference on Extending Database
Technology, pages 469-483, 1998.

. J.E. Cook and A.L. Wolf. Discovering Models of Software Processes

from Event-Based Data. ACM Transactions on Software Engineering and
Methodology, 7(3):215-249, 1998.

. J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge

Tracts in Theoretical Computer Science. Cambridge University Press,
Cambridge, UK, 1995.

D. Grigori, F. Casati, U. Dayal, and M.C. Shan. Improving Business Pro-
cess Quality through Exception Understanding, Prediction, and Preven-
tion. In P. Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao,
and R. Snodgrass, editors, Proceedings of 27th International Conference
on Very Large Data Bases (VLDB’01), pages 159-168. Morgan Kauf-
mann, 2001.

xxvi

11.

12.

13.

14.

15.

16.

17.
18.

19.

J. Herbst. A Machine Learning Approach to Workflow Management. In
Proceedings 11th European Conference on Machine Learning, volume 1810
of Lecture Notes in Computer Science, pages 183-194. Springer-Verlag,
Berlin, 2000.

IDS Scheer. ARIS Process Performance Manager (ARIS PPM): Measure,
Analyze and Optimize Your Business Process Performance (whitepaper).
IDS Scheer, Saarbruecken, Gemany, http://www.ids-scheer.com, 2002.

G. Keller and T. Teufel. SAP R/8 Process Oriented Implementation.
Addison-Wesley, Reading MA, 1998.

M. zur Miihlen and M. Rosemann. Workflow-based Process Monitoring
and Controlling - Technical and Organizational Issues. In R. Sprague,
editor, Proceedings of the 33rd Hawaii International Conference on System
Science (HICSS-33), pages 1-10. IEEE Computer Society Press, Los
Alamitos, California, 2000.

W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic
Models, volume 1491 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin, 1998.

M. Sayal, F. Casati, U. Dayal and M.C. Shan. Business Process Cockpit.
In Proceedings of 28th International Conference on Very Large Data Bases
(VLDB’02), pages 880-883. Morgan Kaufmann, 2002.

J. Scott. Social Network Analysis. Sage, Newbury Park CA, 1992.

A.J.M.M. Weijters and W.M.P. van der Aalst. Workflow Mining: Discov-
ering Workflow Models from Event-Based Data. In C. Dousson, F. Héppner,
and R. Quiniou, editors, Proceedings of the ECAI Workshop on Knowledge
Discovery and Spatial Data, pages 78-84, 2002.

A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow
Models from Event-Based Data using Little Thumb. Integrated Computer-
Aided Engineering, 10(2):151-162, 2003.

