
Achieving a General, Formal and Decidable Approach
to the OR-join in Workflow using Reset nets

Moe Thandar Wynn1, David Edmond1, W.M.P. van der Aalst1,2 and A.H.M. ter
Hofstede1

1 Center for IT Innovation, Queensland University of Technology
P.O. Box 2434, Brisbane Qld 4001, Australia.

{m.wynn,d.edmond,a.terhofstede}@qut.edu.au
2 Department of Technology Management, Eindhoven University of Technology

P.O. Box 513, NIL-5600 MB, Eindhoven, The Netherlands.
w.m.p.v.d.aalst@tm.tue.nl

Abstract. Workflow languages offer constructs for coordinating tasks. Among
these constructs are various types of splits and joins. One type of join, which
shows up in various incarnations, is the OR-join. Different approaches assign
a different (often only intuitive) semantics to this type of join, though they do
share the common theme that synchronisation is only to be performed for active
threads. Depending on context assumptions this behaviour may be relatively easy
to deal with, though in general its semantics is complicated, both from a defini-
tion point of view (in terms of formally capturing a desired intuitive semantics)
and from a computational point of view (how does one determine whether an
OR-join is enabled?). In this paper the concept of OR-join is examined in detail
in the context of the workflow language YAWL, a powerful workflow language
designed to support a collection of workflow patterns and inspired by Petri nets.
The OR-join’s definition is adapted from an earlier proposal and an algorithmic
approach towards determining OR-join enablement is examined. This approach
exploits a link that is proposed between YAWL and Reset nets, a variant of Petri
nets with a special type of arc that can remove all tokens from a place.

Keywords: OR-join, YAWL, Workflow patterns, synchronizing merge, Petri nets, Reset nets.

1 Introduction

Workflow specifications should capture various aspects of business models such as
the flow of control, the flow of data, the structure of the organisation, and the use of
resources (see e.g.[13]). The control flow perspective captures the execution interde-
pendencies between the tasks of a business process. In-depth analysis and comparison
of a number of commercially available workflow management systems has been per-
formed [4]. The findings demonstrate that the interpretation of even the basic control
flow constructs is not uniform and it is often unclear how the more complex require-
ments could be supported. The authors propose 20 workflow patterns to address con-
trol flow requirements in a language independent style. YAWL (Yet Another Workflow
Language) is a result of this analysis, it provides direct support for most patterns [3].
YAWL has a formal semantics specified as a transition system. Although YAWL ex-
ploits concepts from Petri nets, it also provides direct support for those patterns hard to

realise in Petri nets. One of these patterns corresponds to the synchronising merge or
the OR-join, the focus of this paper. In practice, there is a need for a construct like the
OR-join as is evident from e.g. the fact that some commercial systems support OR-join
like constructs. However, experience with these systems shows that it is difficult to se-
lect a suitable semantics and implement it efficiently. Workflow management systems
like InConcert, eProcess, and WebSphere MQ Workflow have solved problems related
to the OR-join using syntactical restrictions. IBM WebSphere MQ Workflow [17] (for-
merly known as MQSeries Workflow and FlowMark and also used as a basis for the
new BPEL standard) offers full support for the OR-join but in order to do this it re-
quires the workflow to be acyclic, i.e., the only way to introduce loops is by executing
the entire (sub)process [2]. Other systems like Eastman and Domino Workflow seem to
use a non-local semantics similar to the one used in YAWL. Such a non-local semantics
may lead to unexpected results. Moreover, a non-local semantics may result in poor per-
formance as is stated in the manual of Eastman: “Parallel instances can accumulate at a
Join workstep if the instances are routed to the workstep by preprocessing rules. These
instances will eventually be joined by a RouteEngine subprocess (thread) that examines
Join worksteps for such instances. This Join scavenger thread reduces system efficiency,
so routing to Join worksteps using preprocessing rules should be avoided” [9]. These
examples illustrate the practical relevance of the OR-join and serve as a motivation for
the work reported in this paper. For a more complete discussion on workflow systems’
support for OR-join semantics, we refer to [2, 4, 14, 15].

The OR-join is a control flow construct that sometimes behaves like an AND join
and sometimes like an XOR join based on the current context. Variants and interpreta-
tions of the OR-join have been proposed in the literature. In [18], several possible inter-
pretations of OR-join semantics in the context of Event-driven Process Chains (EPCs)
are discussed. If there is a matching OR-split, the OR-join semantics is taken to be
“wait for the completion of all paths activated by the matching split”. If there is no
matching split, there could be at least three interpretations of an OR join: wait-for-all,
first-come and every-time [18]. In [2], the authors highlight the technical, conceptual
and practical problems with the formal semantics of the OR-join in Event driven Pro-
cess Chains (EPCs). The authors suggest that there is no sound formal semantics for
EPCs that is fully compliant with the informal semantics and that any formal seman-
tics for EPCs will impose some restrictions or will deviate from the informal semantics
to some extent. The authors demonstrate the problems using vicious circles, which are
formed when two or more OR-joins are in a feedback loop and each OR-join waits for
the other OR-join to complete first. On the other hand, in [15] a semantic framework for
formally defining the non-local semantics of EPCs including the OR-join is proposed.
The author states that “a single transition relation cannot precisely capture the informal
semantics of EPCs”. It is proposed that the non-local semantics be defined as a pair of
transition relations and a semantic definition using techniques from fixed point theory
is presented [15]. The current OR-join approach in YAWL [3] is intended to be a gener-
alised approach and the formal semantics of the OR-join is defined by ignoring all other
OR-joins. This approach is described as “ad hoc in some way” [15].

The contributions of this paper are threefold. Firstly, we re-examine the OR-join
semantics as proposed in [3], because its behaviour is non-intuitive in the context of

OR-joins depending on other OR-joins and composite tasks (they cannot be treated like
black boxes). Secondly, for the purposes of the OR-join definition and analysis, we
propose an abstract view on YAWL, one which is formalised in terms of Reset nets [5–
8, 10–12]. Reset nets are considered the most suitable formalism as reset arcs provide
direct support for the cancellation feature in YAWL (another concept introduced to
YAWL as a result of the workflow patterns and the difficulty of realising this feature
in Petri nets). Thirdly, the mapping of YAWL nets to Reset nets is exploited to find
an algorithmic solution to the non-trivial problem of OR-join enablement. Note that the
contribution of this paper is not limited to YAWL. Many systems and languages struggle
with the semantics and implementation of the OR-join. This paper provides suitable
semantics and gives a concrete algorithm to support an efficient implementation.

This rest of the paper is organised as follows. In Section 2, we introduce the current
OR-join semantics in YAWL, discuss the problems with this semantics and propose
alternative treatments for OR-joins depending on other OR-joins in a YAWL net. In
Section 3, the definitions of EWF-nets (Extended Workflow Nets) and Reset nets are
presented together with the proposed abstractions to enable EWF-net to Reset net map-
pings. In Section 4, we propose a new semantics for the OR-join in YAWL. In Section 5,
we propose an algorithm for OR-join analysis based on well-known backwards search
techniques. Section 6 concludes the paper.

2 Current semantics of the OR-join in YAWL

In this section, we first outline the challenges associated with the non-local semantics
of the OR-join. In particular, we show how ignoring other OR-joins during the analysis
can lead to counter-intuitive results. We then propose some alternative treatments for
OR-joins on the path to other OR-joins.

2.1 The OR-join in YAWL

A YAWL model is made up of tasks, conditions and a flow relation between tasks and
conditions. In YAWL, tasks may be directly connected graphically. The splits, joins,
conditions and cancellation symbols for YAWL are shown in Figure 1. YAWL uses the
terms tasks and conditions to avoid confusion with Petri net terminology (transitions
and places). If there is a cancellation set associated with a task, the execution of the task
removes all the tokens from the conditions and tasks in the cancellation set. Cancelling
a task is achieved by removing tokens from internal conditions of the task. An OR-join
task is enabled at a marking iff at least one of its input conditions is marked and it is not

Fig. 1. Splits, joins, conditions and cancellation in YAWL

possible to reach a marking that marks all currently marked input conditions (possibly
with fewer tokens) and at least one that is currently unmarked. If it is possible to place
tokens in the unmarked input conditions of an OR-join in the reachable markings from
the current marking, then the OR-join task should not be enabled and wait until either
more input conditions are marked or until it is no longer possible to mark more input
conditions.

Fig. 2. A YAWL net with an OR-split task B and two OR-join tasks C and D

Fig. 3. Reachability graph of the YAWL net in Figure 2 (assuming some OR-join behaviour)

The example in Figure 2 demonstrates an unstructured YAWL net with AND-split
task A, AND-join task E, OR-split task B and OR-join tasks C and D. This example
demonstrates the different behaviours of OR-joins in the context of two different mark-
ings. First consider a marking M = c1+c2+c3 where there is a token in input condition
c1 of OR-join task C and in input condition c3 of OR-join task D. To determine whether
tasks C and/or D should be enabled at M , we need to find out whether tokens could be
put into c4 or c5 in the reachable markings from M . The reachability graph of Figure
3 shows the reachable markings from the initial marking M0 = ci to the end marking
M = co.1 We can see that by executing task B, we can reach markings c1 + c3 + c5
or c1 + c3 + c4 + c5 that mark c5, an unmarked input condition of task D in M . Also,
markings c1 + c3 + c4, c1 + c3 + c4 + c5 could be reached by executing task B and
they mark c4, an unmarked input condition of task C in M . As we can reach a new
marking from M which can put a token in an unmarked input condition of the OR-join
tasks C and D, neither task C or D should be enabled at M . If we consider a marking
M ′ = c1+c3+c4, where all the input conditions of C (i.e., c1 and c4) are marked, then

1 Note the overloading of notation, i.e., here co is a multiset denoting the marking with one
token in condition co.

C would be enabled at M ′. We will also enable task D at M ′ as it is not possible for
another token to arrive at input condition c5. Note that in the scenario where we move
from M to M ′, task D was not enabled in M and, although no tokens were added to
the input conditions of this task, it got enabled in M ′.

Fig. 4. Cancellation task C with an infinite loop

Now, let us consider OR-joins in the light of cancellation. In Figure 4, we describe
a YAWL net with (i) task C removing tokens from the conditions c1, c2 and task B
when firing, and (ii) an OR-join task E. At a marking M = c2, we marked one of the
input conditions of E and we need to perform an analysis to decide whether both c2
and c3 could be marked in a reachable marking from M . We can observe the following
sequence of reachable markings from M : c2 →C c3 →D c1 + c2 →B 2c2 →C c3.
This is due to the cancellation feature of C, removing tokens from c2 when firing. We
can conclude that it is not possible to reach a bigger marking c2 + c3 from M and
therefore, E should be enabled at M . Let us consider a different situation where task
C does not have a cancellation set associated with it. From marking M = c2, we can
observe the following sequence of reachable markings: c2 →C c3 →D c1 + c2 →B

2c2 →C c2+c3. As we can reach c2+c3 which marks more input places of the OR-join
task E, the analysis will conclude that task E should not be enabled at M . This example
demonstrates the possible effect that the cancellation feature of a task can have on the
OR-join enablement analysis.

From the above examples, it is obvious that the OR-join semantics requires careful
analysis and the decision to enable an OR-join cannot be made locally. Any OR-join
algorithm must evaluate all the reachable markings from a current marking to determine
whether there is a possibility of a token arriving at an input condition of an OR-join
which is not currently marked (while all input conditions which were already marked
remain marked though possibly with fewer tokens). This algorithm potentially needs
to be applied every time the marking changes and the OR-join analysis could place a
significant load on any workflow engine required to execute it, cf. the quote from the
manual of Eastman [9] in the introduction.

2.2 Problems with current OR-join semantics in YAWL

Two problems may be identified with the current OR-join semantics of YAWL which
are related to the treatment of OR-joins and composite tasks preceding an OR-join under
consideration.

The current OR-join semantics ignores other OR-joins when analysing whether a
particular OR-join should be enabled at a given marking [3]. In Figure 5, there are two
OR-join tasks, E and F in the YAWL net. Consider a marking M = c1 + c3 where the
analysis for the OR-join task, F is performed. After executing task C, it is possible to
reach either c3 + c4, c3 + c5 or c3 + c4 + c5. One possible occurrence sequence is
c1 + c3 →C c3 + c4 + c5 →D c3 + c4 + c6 →E c3 + c7. Hence, M ′ = c3 + c7
is a reachable marking from M . However, the current OR-join semantics ignores other
OR-joins on the path to F, so task E and the associated conditions will not be taken into
account, and M ′ is therefore not considered as a reachable marking during the OR-join
analysis of F. As a result, the analysis will conclude that there is no possibility of another
token arriving in c7 and F would be enabled at M . This behaviour is probably not what
one would expect from this specification. It could also result in multiple executions
of task F and more than one token could be produced for co e.g. (c1 + co). A YAWL
model which can produce a token for the output condition co while still having tokens
in the other conditions is considered as not having proper completion and is therefore
not sound [1]. We have seen that as the analysis of a given OR-join does not consider
the possibility of a token arriving from a path which has an OR-join, this could result
in premature enabling and multiple execution of OR-join tasks when they are nested.

Fig. 5. A YAWL net with two OR-join tasks E and F

The other problem is that the OR-join semantics in [3] does not treat composite
tasks as “black boxes”, i.e., the semantics is based on the “unfolding” of the YAWL
model. This semantics implies that a YAWL net at a lower level cannot be considered
as a black box, thus impacting the OR-join analysis at a higher level net. Consider
a specification where task B in Figure 5 is a composite task with an OR-join. When
evaluating whether an OR-join should be enabled at a given marking, the analysis will
be performed at lower level nets that make up a YAWL specification. This also applies
for composite tasks which can deadlock. Consider marking c2 + c7. If task B contains
a subprocess that will deadlock, then F is enabled. If B has proper completion, then F
is not enabled. This also demonstrates that in the current semantics, composite tasks
cannot be treated as black boxes.

2.3 Optimistic and pessimistic approaches

Instead of ignoring other OR-join tasks altogether during the analysis, we propose two
alternative treatments for those OR-joins: treat them either as XOR-joins (optimistic)
or as AND-joins (pessimistic). Both optimistic and pessimistic approaches achieve the

desired behaviour for an OR-join analysis by delaying enablement when there is a pos-
sibility of more tokens arriving to unmarked input conditions of the OR-join. We believe
that these two alternatives result in an analysis which is more closely related to the in-
formal semantics of OR-joins and still allow for sound semantics (i.e., avoid the fixpoint
problems discussed in [2]).

The treatment of an OR-join on the path to another OR-join as an XOR-join is an
optimistic approach. Consider a marking M = c1 + c3 in Figure 5 where an OR-join
analysis for task F would be performed. Instead of ignoring the other OR-join task E
during the analysis, task E will be treated as an XOR-join task. This will mean that the
occurrence sequence c1 + c3 →C c3 + c4 →E c3 + c7 would be considered. As a
result, task F is not enabled at M . This interpretation of OR-join task E as an XOR-
join, prevents F from being enabled prematurely and it matches more closely with the
informal semantics of OR-joins.

The treatment of an OR-join on the path to another OR-join as an AND-join is a
pessimistic approach, as this now requires tokens in all input conditions of the AND-
join before enabling. Consider again M = c1 + c3 in Figure 5 where an OR-join
analysis for task F would be performed. This time, instead of ignoring task E, it will
be treated as an AND-join task. Due to the OR-split behaviour of task C, tokens can
be present in c4 or c5 or both after firing C. This occurrence sequence c1 + c3 →C

c3+c4+c5 →D c3+c4+c6 →E c3+c7 is possible. As a token can be put in c7 while
c3 remains marked, F is not enabled at M . This preserves the same informal semantics
as an optimistic approach, and both approaches result in delaying the enablement of the
OR-join task F.

In some cases, we observe that treating other OR-joins on the path as XOR-joins
using an optimistic approach is more appropriate for the analysis. Consider a scenario
where task C in Figure 5 is an XOR-split task rather than the OR-split task. Let us
consider a marking c1 + c3 and that we treat task E as an AND-join task. As it is
not possible for task E to fire due to the XOR-split and AND-join combination, the
OR-join analysis will conclude that F should be enabled. As a result, task F could be
executed more than once and the YAWL net does not have proper completion. The
analysis will reach the same conclusion as the current semantics in YAWL where the
semantics ignores the OR-join dependencies.

We have also found that when OR-joins are in conflict, there might not be a satisfac-
tory treatment for OR-joins. Let N be a YAWL net and o1, o2 be two OR-join tasks. We
define o1 and o2 to be in conflict iff o1 is on a directed path to o2 and o2 is on a directed
path to o1. We have in Figure 6 an unusual situation described as a vicious circle in [15]
where the OR-joins are in conflict and it is unclear what the exact informal semantics
of the model should be. In Figure 6, there are two OR-join tasks B and C which are in
conflict with each other. Condition c3 is an output condition of C and an input condition
of B and c4 is an output condition of B and an input condition of C. Figure 6 is inspired
by [15]. Consider a marking c1 + c2 where an OR-join analysis is carried out for task
B and C. Using the optimistic approach, we treat task C as an XOR-join task during the
analysis for B. As a result, we can find a reachable marking c1 + c3 + c6, which marks
both input conditions of B. Therefore, B should not be enabled at c1 + c2. Similarly,
we will treat B as an XOR-join task for the analysis of task C and there is a reachable

marking c2+ c4+ c5. Therefore, task C should not be enabled at c1+ c2. As a result of
this optimistic approach, the YAWL net will deadlock because of the OR-join seman-
tics using the optimistic approach. Using the pessimistic approach, we treat task C as an
AND-join task during the analysis for B. At the marking c1 + c2, it is not possible to
enable C due to the AND-join semantics, and therefore, task B will be enabled and can
be fired. This will enable task C and after firing C, tokens will be placed in c3 and c6.
Therefore, tasks B and C could potentially keep firing alternatingly thus resulting in a
potentially infinite number of firings of task D. The same is true for the analysis of task
C. We can see that the pessimistic approach would also result in improper completion.
The original semantics that ignores other OR-joins would also result in a similar be-
haviour to the pessimistic approach. In this case, all three approaches deviate from the
informal semantics of the OR-join and it is not possible to define the formal semantics
accurately.

Fig. 6. OR-join tasks B and C in conflict

From the above discussions, it can be seen that there is no ideal treatment for non-
local OR-join semantics in YAWL. Any formal semantics will impose some restrictions
or deviate from the informal semantics to some extent. In our opinion, the XOR-join
treatment of other OR-joins matches more closely the informal semantics of the OR-
join. Consider the YAWL example in Figure 5 with a marking M = c3 + c4. If we
treat E as an XOR-join during the analysis for task F, the outcome would be that F is
not enabled at M because it is possible to reach a marking M ′ = c3 + c7 by executing
E first. On the other hand, AND-join treatment of E will result in F being enabled at
M and could result in F being executed twice. Hence, we chose to use the optimistic
approach (XOR-join treatment) for our formal semantics.

3 Establishing a formal foundation

The formal semantics of YAWL is expressed in terms of a transition system [3] and
while inspired by Petri nets, YAWL should not be seen as an extension of these. New
concepts were introduced in YAWL to suitably deal with the workflow patterns [4].
YAWL constructs such as OR-join, cancellation and multiple instances are not directly
supported by Petri nets. To perform an OR-join analysis, a multiple instances task does
not effect the analysis but cancellation plays an important role (as shown in Figure 4).
This cancellation feature of YAWL is theoretically closely related to Reset nets, which

are Petri nets with reset arcs. For an OR-join analysis, we propose to map a YAWL
model represented as an EWF-net (Extended Workflow Net) to a Reset net. In this
section, we first present the definitions of EWF-nets and then discuss the proposed
abstractions to the EWF-nets. We then present the definition and firing rules for Reset
nets.

3.1 EWF-nets

A YAWL model is formally defined as a nested collection of EWF-nets [3]. As we will
show later, it suffices to consider only one EWF-net in isolation when evaluating an
OR-join.

Definition 1 (EWF-net [3]). An extended workflow net (EWF-net) N is a tuple (C, i,o,
T, F, split , join, rem,nofi) such that2

– C is a set of conditions and T is a set of tasks,
– i ∈ C is the unique input condition and o ∈ C is the unique output condition,
– F ⊆ (C \ {o} × T) ∪ (T × C \ {i}) ∪ (T × T) is the flow relation,
– every node in the graph (C ∪ T, F) is on a directed path from i to o,
– split: T → {AND, XOR,OR} specifies the split behaviour of each task and

join: T → {AND, XOR,OR} specifies the join behaviour of each task,
– rem: T 9 P(T ∪ C \ {i, o}) specifies the additional tokens to be removed by

emptying a part of the workflow;
– nofi: T 9 N × Ninf × Ninf×{dynamic, static} specifies the multiplicity of each

task (minimum, maximum, threshold for continuation, and dynamic/static creation
of instances).

In an EWF-net, it is possible for two tasks to have a direct connection. We will
add an implicit condition c(t1,t2) between two tasks t1, t2 if there is a direct connection
from t1 to t2. We denote as Cext the set of conditions extended to include implicit
conditions, and denote the extended flow relation as F ext. We now define an explicit
extended workflow net (E2WF-net) using Cext and F ext as follows:

Definition 2 (E2WF-net). Let N = (C, i,o, T, F, split , join, rem,nofi) be an EWF-
net, the corresponding explicit EWF-net (E2WF-net) is defined as
(Cext, i,o, T, F ext, split , join, rem,nofi) where

Cext = C ∪ {c(t1,t2) | (t1, t2) ∈ F ∩ (T × T)} and
F ext =(F \ (T × T))

∪{(t1, c(t1,t2)) | (t1, t2) ∈ F ∩ (T × T)}
∪{(c(t1,t2), t2) | (t1, t2) ∈ F ∩ (T × T)}.

Let N be an E2WF-net and x ∈ Cext ∪ T , we use •x and x• to denote the set of
inputs and outputs of a node i.e. •x = {y|(y, x) ∈ F ext} and x• = {y|(x, y) ∈ F ext}.
A marking is denoted by M and, just as with ordinary Petri nets, it can be interpreted
as a vector, function, and multiset. M is an m-vector, where m is the total number

2 Note that we are using basic mathematical notations such as 9 for a partial function, P for
powerset, N for natural numbers, and Ninf for N ∪ {inf }.

of conditions. This vector can also be seen as a function M : Cext → N, where M(c)
returns the number of tokens in a condition c of a marking M . Functions mapping some
domain (in this case C) onto N can also be seen as multisets, i.e., M is a multiset over
C. Since a marking is a multiset, we can use notations such as M ≤ M ′, M + M ′,
and M − M ′. M ≤ M ′ iff ∀c∈dom(M)M(c) ≤ M ′(c). M + M ′ and M − M ′ are
a multisets such that for any c ∈ dom(M): (M + M ′)(c) = M(c) + M ′(c) and
(M −M ′)(c) = M(c)−M ′(c).

Tasks are the active components of an E2WF-net and when a task t fires at a marking
M , it changes the state and reaches a new marking M ′, denoted as M →t M ′. A YAWL
specification supports hierarchy and a composite task is mapped onto an EWF-net. As
we will abstract from composition, we refer the reader to [3] for a formal definition of
a YAWL specification.

3.2 Abstractions

We propose to abstract the constructs in YAWL that do not affect an OR-join analysis.
They include multiple instances, composite tasks and internal conditions of a task. We
can assume that if a multiple instances task is enabled and executed, it will complete
and put tokens into the appropriate output conditions of the task. Similarly, with the
state transitions and internal conditions within a task, we can abstract from these tran-
sitions and only consider the input and output conditions of a task. In the mappings to
Reset nets, we will introduce one place for each task which indicates whether a task
is currently executing and as a result, abstract from the internal conditions of a task.
We also propose to treat EWF-nets as flat nets, and ignore the hierarchical structure for
the purpose of an OR-join analysis. In other words, when deciding whether an OR-join
should be enabled at a given marking, we will not be considering the effect of deadlock
within a composite task. We assume that a YAWL subnet which is used as a composite
task at a given level is sound. Therefore, if a composite task can be enabled and exe-
cuted, it will terminate at some time, and tokens will be placed in the appropriate output
condition(s) of the composite task. As a result, even if there is an OR-join task in the
composite task, it will not influence the decision to enable an OR-join task at a higher
level. We recognise that due to the semantics of only considering tasks at the same level,
the OR-join task could wait and result in a deadlock if a composite task is not sound
and could deadlock. Because of these proposed abstractions from an EWF-net, we are
now able to map to a Petri net like formalism. During an OR-join analysis, we are only
required to consider the split and join behaviours of tasks and the cancellation set that is
associated with a task. To support the cancellation feature of an EWF-net, we propose
to map an EWF-net onto a Reset net.

3.3 Reset nets

A Reset net is a Petri net with special reset arcs, that can clear the tokens in selected
places. Reset arcs do not change the requirements of enabling a transition but when a
transition fires, they will remove tokens from the specified places. The reset arcs are
used to underpin the rem function that models the cancellation feature of EWF-nets, cf.

Definition 1. This approach allows us to leverage existing literature and techniques in
the area of Petri nets and Reset nets in particular [5–8, 10–12].

Definition 3 (Reset net). A Petri net is a tuple (P, T, F) where P is a set of places, T
is a set of transitions, P ∩ T = ∅ and F ⊆ (P × T) ∪ (T × P). A Reset net is a tuple
(P, T, F, R) where (P, T, F) is a Petri net and R ∈ T 9 P(P) is the set of reset arcs
associated with every transition t ∈ T .

In the remainder of the paper, when we use the expression F (x, y), it denotes 1 if
(x, y) ∈ F and 0 if (x, y) 6∈ F . A reachable marking M ′ is defined by first removing
tokens needed for enabling t from its input places (•t), then removing all tokens from
reset places and then finally adding tokens to the output places of t (t•). The notation
M [P] denotes function restriction and restricts M to a set of places P , i.e., a projection.

Definition 4 (Enabling and firing Reset nets). Let (P, T, F, R,M) be a marked Reset
net. A transition t ∈ T is enabled iff •t ≤ M . Firing t at marking M reaches marking
M ′, denoted by M →t M ′, iff •t ≤ M and M ′ = (M − •t)[P \R(t)] + t•.

Definition 5 (Occurrence sequence). Let ((P, T, F, R),M0) be a marked Reset net.
Let M1, ...,Mn be markings of the reset net and let t0, t1, ..., tn−1 be transitions in T .
Sequence s = M0t0M1...tn−1Mn is an occurrence sequence iff Mi →ti Mi+1 for all
i, 0 ≤ i ≤ n− 1. A marking M ′′ is reachable from a marking M , written M →∗ M ′′,
iff there is an occurrence sequence with initial marking M and final/last marking M ′′.

To conclude this section, we define the notion of backward firing. This notion will
be used to analyze coverability and is required for the OR-join analysis as is described
in the remainder of this paper.

Definition 6 (Backward firing). Let (P, T, F, R) be a Reset net and let M and M ′

be a markings of this net. M ′ 99Kt M if and only if it possible to fire a transition t
backwards starting from M and resulting in M ′. 3

M ′ 99Kt M ⇔ ∀p ∈ R(t) : M(p) ≤ F (t, p) ∧

M ′(p) =
{

(M(p) � F (t, p)) + F (p, t) if p ∈ P \R(t)
F (p, t) if p ∈ R(t).

For any reset place p, M(p) ≤ F (t, p) because it is emptied when firing and then
F (t, p) tokens are added. We do not require M(p) = F (t, p) because the aim is cov-
erability and not reachability. M ′, i.e., the marking before (forward) firing t, should
at least contain the minimal number of tokens required for enabling and resulting in a
marking of at least M . Therefore, only F (p, t) tokens are assumed to be present in a
reset place p.

4 Linking YAWL to Reset nets

In this section, we describe how an EWF-net could be transformed into a Reset net.
After the abstractions from multiple instances, composite tasks and internal places in

3 For any natural numbers a, b: a � b is defined as max(a− b, 0).

a YAWL net, we can consider a YAWL net as having tasks with various split and join
behaviours and possible cancellation sets and explicit and implicit conditions. For an
EWF-net without OR-join tasks, there is then a straight-forward mapping into a Reset
net. For an EWF-net with OR-join tasks, we propose to use the optimistic treatment
whereby other OR-joins on the path are replaced with XOR-joins, and perform the
necessary transformations.

4.1 Semantics of an EWF-net without OR-joins

For every task t in an E2WF-net, we split t into tstart and tend to support the various
split and join constructs in YAWL. The number of tstart transitions depends on the join
behaviour of a task and the number of tend transitions depends on the split behaviour.
Figure 7 illustrates the approach taken in the transformation.

Fig. 7. Reset net transformations for YAWL split and join behaviours

Definition 7 (E2WF-Reset net). Let N = (Cext, i,o, T, F ext, split , join, rem,nofi)
be an E2WF-net without OR-joins. A corresponding E2WF-Reset net is a tuple (P, T ′, F ′, R)
such that

P = Cext ∪ {pt|t ∈ T} is a set of places,
T ′ = Tstart ∪ Tend such that
Tstart = {tstart|t ∈ T ∧ join(t) = AND}

∪{tpstart|t ∈ T ∧ join(t) = XOR ∧ p ∈ •t},
Tend ={tend|t ∈ T ∧ split(t) = AND}

∪{tpend|t ∈ T ∧ split(t) = XOR ∧ p ∈ t•}
∪{txend|t ∈ T ∧ split(t) = OR ∧ x ⊆ t • ∧ x 6= ∅},

F ′ ={(p, tstart)|t ∈ T ∧ join(t) = AND ∧ p ∈ •t}
∪{(tstart, pt)|t ∈ T ∧ join(t) = AND}
∪{(pt, tend)|t ∈ T ∧ split(t) = AND}
∪{(tend, p)|t ∈ T ∧ split(t) = AND ∧ p ∈ t•}
∪{(p, tpstart)|t ∈ T ∧ join(t) = XOR ∧ p ∈ •t}

∪{(tpstart, pt)|t ∈ T ∧ join(t) = XOR ∧ p ∈ •t}
∪{(pt, t

p
end)|t ∈ T ∧ split(t) = XOR ∧ p ∈ t•}

∪{(tpend, p)|t ∈ T ∧ split(t) = XOR ∧ p ∈ t•}
∪{(pt, t

x
end)|t ∈ T ∧ split(t) = OR ∧ x ⊆ t • ∧ x 6= ∅}

∪{(txend, p)|t ∈ T ∧ split(t) = OR ∧ p ∈ x ∧ x ⊆ t • ∧ x 6= ∅},
R ∈T ′ 9 P(P) and dom(R) ⊆ Tend such that

t ∈ T ∧ split(t) = AND
⇒ R(tend) = {pt′ |t′ ∈ rem(t) ∩ T} ∪ (rem(t) ∩ Cext),

t ∈ T ∧ split(t) = XOR ∧ p ∈ t•
⇒ R(tpend) = {pt′ |t′ ∈ rem(t) ∩ T} ∪ (rem(t) ∩ Cext),

t ∈ T ∧ x ⊆ t • ∧ x 6= ∅ ∧ split(t) = OR
⇒ R(txend) = {pt′ |t′ ∈ rem(t) ∩ T} ∪ (rem(t) ∩ Cext).

The set of reset places for a given transition tend has been defined in R to support the
cancellation feature in YAWL. A place pt is also introduced to represent an internal
place between tstart and tend. The flow relation F ′ is also modified so that the newly
introduced places in P and transitions T ′ are properly connected.

The function marked returns the set of marked conditions in an EWF-net for a given
marking M .

Definition 8 (Marked). For a marking M of an E2WF-Reset net:
marked(M)={c ∈ dom(M) | M(c) > 0}.

The v relation indicates that M marks fewer or the same places as M ′. This is
a looser notion of smaller markings than ≤, because only the marking of places is
considered and the number of tokens in a place is ignored. The notation @ is used to
indicate that M marks strictly less places than M ′. The notation M [C] restricts M to
a set of conditions C, i.e., a projection. For instance, M [t•] @ M ′[t•], represents a
comparison between M and M ′ that is restricted to the output places of t.

Definition 9 (v). Let M,M ′ be two markings of an E2WF-Reset net and C a set of
conditions: M v M ′ iff marked(M) ⊆ marked(M ′), M @ M ′ iff M v M ′ and
¬(M ′ v M).

We now define how a given marking M in an E2WF-net can be linked to a mark-
ing M∗ in the corresponding E2WF-Reset net. For all the conditions that exist in an
E2WF-net, they will be marked exactly the same in M∗ and zero tokens for the newly
introduced places in the E2WF-Reset net i.e. M = M∗.

Definition 10 (M∗). Let (N,M) be a marked E2WF-net and N∗ be the corresponding
marked E2WF-Reset net of N, then M corresponds in a natural way to a marking of
N∗. This marking marks all the places in N∗ which correspond to conditions in N
with the same number of tokens. We will refer to this as the corresponding marking and
denote it as M∗.

We define the enabling and firing rules for tasks in an E2WF-net using the transition
firing rules as defined for Reset nets. Executing a task of an E2WF-net corresponds to
executing the corresponding start and end transitions tstart and tend of the E2WF-Reset
net.

Definition 11 (Enabling and firing E2WF-net). Let (N,M) be a marked E2WF-net
and (N∗,M∗) be the corresponding marked E2WF-Reset net. A task t is enabled at
(N,M) iff •t ≤ M∗. Firing t at M reaches M ′, denoted by M →t M ′ iff for the
corresponding start transition tstart and end transition tend, we have M∗ →tstart

M ′′ →tend M∗′
.

Note that this definition allows us to transfer typical Petri-net concepts such as reacha-
bility to E2WF-nets.

We are seeking a predicate superM to determine whether we can reach a marking
that marks more places than M for a certain set of places. From a given marking M and
a given set of places P ′, we can determine whether it is possible to reach a marking from
M which marks more places in P ′. If we define P ′ = •o-j, a set of input conditions
of an OR-join, then we can determine whether a bigger marking (restricted to places in
P ′) exists for a given marking M (in which case the OR-join is not enabled).

Definition 12 (superM). Let N = (P, T, F, R,M) be a marked E2WF-net and P ′ ⊆
P be a set of places for consideration, superM(N,M,P ′) holds iff there is a marking
M ′ such that M →∗ M ′ and M [P ′] @ M ′[P ′].

4.2 Semantics of an EWF-net with OR-joins

The transformation from an EWF-net with OR-join tasks into an E2WF-OJ is identical
to E2WF-Reset net transformation for all tasks that are not OR-join tasks. The addi-
tional steps to incorporate OR-join tasks are include creating a set OJ for the tstart

transition of each OR-join task in the E2WF-net and adding tstart transitions in OJ
into Tstart.

Definition 13 (E2WF-OJ). Let N be an EWF-net with OR-joins and N ext be the
E2WF-net of N, the corresponding E2WF-OJ is a tuple (P, T ′′, F ′′, R,OJ) such that
P , T ′, Tstart, Tend, F ′, and R are as defined in Definition 7 and T ′′, F ′′, OJ are
defined as follows:

T ′′ = T ′
start ∪ Tend,

T ′
start = Tstart ∪ {tstart|t ∈ T ∧ join(t) = OR)},

F ′′ = F ′ ∪ {(p, tstart)|t ∈ T ∧ join(t) = OR ∧ p ∈ •t}∪
{(tstart, pt)|t ∈ T ∧ join(t) = OR}, and

OJ = {tstart|t ∈ T ∧ join(t) = OR}.

The function OJ-Remove is used to transform E2WF-OJ by replacing the join be-
haviour of all the OR-join tasks in an E2WF-net to XOR-join and removing the OR-join
task in question. This effectively converts an E2WF-OJ into an E2WF-Reset net so that
we can use the transition firing rules and superM predicate defined for Reset nets.

Definition 14 (OJ-Remove function). Let N ′ = (P, T, F, R,OJ) be an E2WF-OJ
for an EWF-net N and j ∈ OJ be an OR-join task under consideration. The function
OJ-Remove(N ′, j) returns (P ′, T ′, F ′, R′) such that

P ′ = P ,
T ′ = (T \OJ) ∪ {tpstart|t ∈ OJ \ {j} ∧ p ∈ •N t},

F ′ =F ∩ ((P ′ × T ′) ∪ (T ′ × P ′))
∪{(p, tpstart)|p ∈ •N t ∧ t ∈ OJ \ {j}}
∪{(tpstart, pt)|p ∈ •N t ∧ t ∈ OJ \ {j}}

R′ = R.

The firing rules for an E2WF-OJ are defined as follows. The firing rule for a transi-
tion t which is not an OR-join is the same as for Reset nets. For transitions o-j that are
OR-joins in E2WF-net, (i.e. o-j ∈ OJ), the firing rule is defined in two steps. We first
use the OJ-Remove function to transform other OR-joins (except o-j) into XOR-joins
and produce an equivalent E2WF-Reset net. We then check whether superM holds.
If superM holds then the OR-join, o-j, should not be enabled at M . Otherwise, o-j is
enabled at M .

Definition 15 (Enabling rule). Let (P, T, F, R,OJ ,M) be a marked E2WF-OJ. A
transition t ∈ T \ OJ is enabled at M iff •t ≤ M . A transition o-j ∈ OJ is en-
abled at marking M iff at least one of its input places is marked and superM(OJ-
Remove(P, T, F, R,OJ , o-j),M, •o-j) does not hold.

Definition 16 (Forward firing). When a transition t of an E2WF-OJ is enabled at a
marking M ′, it can fire and a new marking M is reached.

M ′ →t M ⇔ ∀p ∈ P : M ′(p) ≥ F (p, t) ∧

M(p) =
{

M ′(p)− F (p, t) + F (t, p) if p ∈ P \R(t)
F (t, p) if p ∈ R(t).

Definition 17 (Reachable markings). We denote M → M ′ iff there is a t ∈ T such
that M →t M ′. We denote M →∗ M ′′ if there is an occurrence sequence from M to
M ′′.

Fig. 8. An E2WF-net N with OR-join tasks C and D

Fig. 9. An E2WF-Reset net for OR-join analysis of task D in Figure 8

We will now describe how the transformations will be performed for an EWF-net
with two OR-join tasks C and D as shown in Figure 8. The shaded place indicates the

explicit condition cBD which has been added for the implicit condition between tasks
B and D. Figure 9 shows an equivalent Reset-net for the E2WF-net in Figure 8 for OR-
join analysis of task D. The OR-join task C is on the path to task D and the OJ-Remove
function is applied to treat task C as an XOR-join task. Also note that OR-join task D
has been removed from the net by the OJ-Remove function.

Consider a marking M = c1+cBD of N where OR-join analysis for task D would be
performed. The input places of task D are c4 and cBD. We need to investigate whether
it is possible to reach a marking that marks both c4 and cBD. We can observe the
sequence c1 + cBD →Cc1

start pC + cBD →Cend c4 + cBD exists and that we can
reach M ′ = c4 + cBD from M . Therefore, superM predicate holds as M →∗ M ′ and
M [{c4, cBD}] @ M ′[{c4, cBD}]. The OR-join analysis for task D will conclude that D
should not be enabled at marking M as it is possible to reach a marking from M that
marks more input places of the OR-join than M does.

5 OR-join algorithm proposal

The main objective of the OR-join algorithm is to determine, for a given OR-join,
whether or not a marking M ′ is reachable from a given marking M that marks more
input places of that OR-join exists. We perform this analysis by first transforming an
EWF-net (with OR-joins) into an E2WF-Reset net for a given OR-join task and then by
calling the OR-join algorithm. Our algorithm is based on backward search techniques
for Well-Structured Transition Systems (WSTSs) [5, 7, 10–12]. The algorithm works
backwards by computing the predecessor markings for a given marking, as opposed to
the forward approach used in coverability tree algorithms. A Reset net can be repre-
sented as a WSTS and the backwards algorithm has been successfully applied to solve
the coverability problems for Reset nets [7, 16].

5.1 Backward algorithm for OR-join analysis

WSTSs are “a general class of infinite state systems for which decidability results rely
on the existence of a well-quasi-ordering between states that is compatible with the
transitions.” [12]. The existence of a well-quasi-ordering over an infinite set of states
ensures the decidability of termination and coverability properties [7, 12].

Definition 18 (Well-Structured Transition System [7]). A well-structured transition
system (WSTS) is a structure S = 〈Q,→,≤〉 such that Q = {m, ...} is a set of states,
→⊆ Q × Q is a set of transitions, ≤⊆ Q × Q is a well-quasi-ordering (wqo) on the
set of states, satisfying the simple monotonicity property, m → m′ and m1 ≥ m imply
m1 → m′

1 for some m′
1 ≥ m′.

Reset nets can be seen as a WSTS 〈Q,→,≤〉 with Q the set of markings, M → M ′ if
for some t, we have M →t M ′ and ≤ the corresponding ≤ order on markings (which
is a wqo) [16].

Definition 19 (Upward-closed set [12]). Given a quasi-ordering ≤ on X, an upward-
closed set is any set I ⊆ X such that y ≥ x and x ∈ I entail y ∈ I . To any x ∈ X

we associate ↑x =def {y|y ≥ x}. A basis of an upward-closed I is a set Ib such that
I =

⋃
x∈Ib ↑x.

Given a WSTS 〈Q,→,≤〉 and a set of states I ⊆ Q, Pred(I), pb(I) and Pred∗(I)
can be defined [16]. The immediate predecessors of I: Pred(I) = {x|x → y ∧ y ∈ I},
all predecessor states of I, Pred∗(I) = {x|x →∗ y ∧ y ∈ I} and pb(I) =

⋃
y∈I pb(y)

where pb(y) yields a finite basis of ↑Pred(↑{y}) (i.e., pb(y) yields a finite set such
that ↑pb(y) =↑Pred(↑{y})) [16]. The coverability problem for a Reset net is as fol-
lows: given two markings x and y can we reach y′ ≥ y starting from x [16]. Pro-
vided that ≤ is decidable and pb(y) exists and can be effectively computed [12], the
backwards reachability analysis can be performed to decide the coverability [7, 10,
16]. {y} is a basis of upward closed set ↑{y} and we can determine that y is cover-
able from x if there exists a x′ ∈ Pred∗(↑{y}) such that x′ ≤ x (because ≤ is a
wqo). As ↑{y} is upward-closed, Pred∗(↑{y}) is upward-closed [12]. We can com-
pute a finite basis of Pred∗(↑{y}) as the limit of the sequence I0 ⊆ I1 ⊆ ... where
I0 =def {y} and In+1 =def In ∪ pb(In) [16]. The sequence eventually stabilises
at some In when ↑In+1 =↑In and we have reached a stabilisation point that has the
property ↑In = Pred∗(↑{y}) [16]. The coverability question now becomes: is there
an x′ ∈↑In such that x′ ≤ x. In is a finite basis for Pred∗(↑{y}) and the coverabil-
ity question can now be answered by testing whether there exists a x′ ∈ In such that
x′ ≤ x.

We now present the procedures that operationalise the coverability question for Re-
set nets. The procedure Coverable returns a Boolean value to indicate whether a mark-
ing t is coverable from a marking s of a Reset net [16].

PROCEDURE Coverable (Marking x, y): Boolean
Marking x′;
BEGIN

for x′ ≤ x do
if x′ ∈ FiniteBasisPred∗({y}) then return TRUE; end if;

end for;
return FALSE;

END

The procedure FiniteBasisPred∗ returns a set of markings which represents a finite
basis of all predecessors and is based on the method described in [16].

PROCEDURE FiniteBasisPred∗ (SET Marking I): SET Marking
SET Marking K, Knext;
BEGIN

K := I; Knext := K ∪ pb(K);
while not IsUpwardEqual(K, Knext) do

K := Knext; Knext := K ∪ pb(K);
end while;
return K;

END

The procedure call IsUpwardEqual(K, Knext) is used to detect whether the stabili-
sation point has been reached i.e. ↑Knext =↑K, cf. [11]. The procedure pb(I) returns
pb(I) such that pb(I) =

⋃
x∈I pb(x) [16].

PROCEDURE pb (SET Marking I): SET Marking
Set Marking Z = ∅; Marking M ;
BEGIN

for M ∈ I do Z := Z ∪ pb(M); end for;
return Z;

END

pb(M) is effectively computed for Reset nets by “executing the transitions backwards
and setting a place to the minimum number of tokens required to fire the transition if
it caused a reset on this place” [16].4 Note that, in our case, this minimum is one as
we do not have weighted arcs. We will make use of backward firing rule as defined in
Definition 6. For each transition t ∈ T , we determine whether an M ′ exists such that
M ′ 99Kt M . Hence, pb(M) = {M ′|∃t∈T M ′ 99Kt M}.

PROCEDURE pb (Marking M): SET Marking
SET Marking Z = ∅;
BEGIN

for t ∈ T do
if M [R(t)] ≤ t • [R(t)] then

Z := Z ∪ {(M � t •+ • t)[P \R(t)] + (M + •t)[R(t)]};
end if;

end for;
return Z;

END

We can then apply the coverability findings of a Reset net to the OR-join analysis.
Let (N,M) be a marked E2WF-net, o-j be the OR-join task under consideration, X be
• o-j, N ′ be the corresponding E2WF-Reset net and Y be a set of markings such that
each marking in Y has only one token in each of the marked input places of o-j in M
and one token in exactly one of the unmarked input places of the o-j in M . To deter-
mine whether o-j should be enabled at M , we need to determine whether there exists a
M ′ ∈ Pred∗(Mw) such that M ′ ≤ M for each of the markings Mw ∈ Y (coverability
question). Each marking Mw in Y satisfies the condition M [X] @ Mw[X], i.e. Mw has
tokens in more input places of the OR-join o-j and if Mw can be reached from M , the
OR-join is not enabled. The procedure OrJoinEnabled is called with parameters M
and X and it returns a Boolean value to indicate whether the OR-join should be enabled
at M .

PROCEDURE OrJoinEnabled (Marking M , SET Place X): Boolean
SET Marking Y ; Marking Mw;

4 Note that the algorithm described in [16] is incorrect. On Page 105 in [16], pb(M) is defined
in a rather naive way. Applying pb(M) to the empty marking yields a counter example, since
it is not a finite basis for ↑Pred∗(↑{M}).

BEGIN
Y = {q +

∑
p∈X:M(p)>0 p | q ∈ X ∧ M(q) = 0};

for Mw ∈ Y do
if Coverable(M,Mw) then return FALSE; end if;

end for;
return TRUE;

END

5.2 A worked example

Throughout the paper we have shown several examples where it is a non-trivial task to
decide if an OR-join is enabled or not. Clearly, the algorithm can be applied successfully
to these situations. To illustrate its inner working in some detail we use one last example.

Fig. 10. A YAWL net with an OR-join task G and cancellation

Fig. 11. A corresponding Reset net for Figure 10 (note the double-headed arrow denoting the
reset arc from CBB to Dend)

Fig. 12. Illustration of backwards reachablility analysis

Consider a marking M = c1 + c7 in Figure 10 where the OR-join analysis for task
G is carried out. It is possible to have an occurrence sequence, c1 + c7 →B cBB +
c3 + c7 →E cBB + c5 + c7 →B cBB + c3 + c5 + c7 →D c4 + c5 + c7 →F

c6+c7. As a result, c6+c7 is a reachable marking from c1+c7 and the OR-join should
not be enabled at marking M . The evaluation will start with a call to the procedure
OrJoinEnabled(c1 + c7, {c6, c7}). Y := {c6 + c7} and for Mw = c6 + c7, we
will obtain a finite basis of all the predecessors of c6 + c7. Figure 12 illustrates the
backwards reachability analysis [11], with the basis of the predecessor markings for
c6 + c7. It can be seen that c1 + c7 is a predecessor of c6 + c7. M ′ ≤ M includes
the following markings {c1, c7, c1 + c7}. As M ′ = c1 + c7 is in the predecessors for
c6 + c7, the procedure will return FALSE, concluding that the OR-join should not be
enabled at M .

6 Conclusion

This paper focuses on the OR-join construct in YAWL and proposes a new semantics.
The decision to enable an OR-join task cannot be made locally: an OR-join task should
only be enabled when there is at least one token in one of the input conditions and
there is no possibility of a token arriving at one of the yet unmarked input conditions
of the OR-join. Otherwise, the OR-join task should wait for synchronisation. Instead
of ignoring other OR-joins on the path, we propose two alternative approaches (opti-
mistic or pessimistic) for OR-joins which are on the path of other OR-joins. Reset nets
are used as formal basis for OR-join analysis to support cancellation features. This is
made possible by the fact that we can abstract from the concepts of YAWL such as
multiple instances, composite task and internal state transitions of a task. We present
transformation rules from a YAWL model with OR-joins to a Reset net for a specific
OR-join analysis. We then propose an OR-join evaluation algorithm which is based on
the backward search techniques for Well-Structured Transition Systems. The algorithm
does not yet exploit potential optimisation techniques as e.g. presented in [10].

To conclude the paper, we would like to emphasise that the results reported in this
paper are not limited to YAWL. As is indicated in the introduction, many workflow man-
agement systems, but also other process-aware information systems (e.g., ERP, CRM,
and PDM systems), have problems dealing with the OR-join. In fact, the problem sur-
faces in many other domains [19].

Acknowledgements. We would like to especially thank Philippe Schnoebelen and
Jerome Leroux for their valuable input on the issue of decidability of OR-join algorithm
and for many useful references provided in the area of Reset nets.

References

1. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The Journal
of Circuits, Systems and Computers, 8(1):21–66, 1998.

2. W.M.P van der Aalst, J. Desel, and E. Kindler. On the Semantics of EPCs: A Vicious Circle.
In M. Rump and F.J. Nüttgens, editors, Proceedings of the EPK 2002: Business Process

Management using EPCs, pages 71–80, Trier, Germany, 2002. Gesellschaft für Informatik,
Bonn.

3. W.M.P. van der Aalst and A.H.M ter Hofstede. YAWL: Yet Another Workflow Language.
Information Systems, 30(4):245–275, June 2005.

4. W.M.P van der Aalst, A.H.M ter Hofstede, B.Kiepuszewski, and A.P.Barros. Workflow
Patterns. Distributed and Parallel Databases, 14:5–51, 2003.

5. P.A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theorems for
infinite-state systems. In Proceedings of the 11th Annual IEEE Symposium on Logic in
Computer Science (27 - 30 July), pages 313–321, New Brunswick, NJ, July 1996. IEEE
Computer Society.

6. P. Darondeau. Unbounded Petri net Synthesis. In J. Desel, W. Reisig, and G. Rozenberg, ed-
itors, Lectures on Concurrency and Petri Nets, Advances in Petri Nets, volume 3098 of Lec-
ture Notes in Computer Science, pages 413–428, Eichstätt,Germany, 2003. Springer-Verlag.

7. C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset Nets Between Decidability and Unde-
cidability. In K. Larsen, S. Skyum, and G. Winskel, editors, Proceedings of the 25th Inter-
national Colloquium on Automata, Languages and Programming, volume 1443 of Lecture
Notes in Computer Science, pages 103–115, Aalborg, Denmark, July 1998. Springer-Verlag.

8. C. Dufourd, P. Jančar, and Ph. Schnoebelen. Boundedness of Reset P/T Nets. In J. Wie-
dermann, P. van Emde Boas, and M. Nielsen, editors, Lectures on Concurrency and Petri
Nets, volume 1644 of Lecture Notes in Computer Science, pages 301–310, Prague, Czech
Republic, July 1999. Springer-Verlag.

9. Eastman Software. RouteBuilder Tool User’s Guide. Eastman Software, Inc, Billerica, MA,
USA, 1998.

10. A. Finkel, J.-F. Raskin, M. Samuelides, and L. van Begin. Monotonic Extensions of Petri
Nets: Forward and Backward Search Revisited. Electronic Notes in Theoretical Computer
Science, 68(6):1–22, 2002.

11. A. Finkel and Ph. Schnoebelen. Fundamental Structures in Well-Structured Infinite Tran-
sition Systems. In C.L. Lucchesi and A.V. Moura, editors, Theoretical Informatics: Third
Latin American Symposium, Campinas, LATIN’98 (20 - 24 April), volume 1380 of Lecture
Notes in Computer Science, pages 102–118, Campinas, Brazil, 1998. Springer-Verlag.

12. A. Finkel and Ph. Schnoebelen. Well-structured Transition Systems everywhere! Theoretical
Computer Science, 256(1–2):63–92, April 2001.

13. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture, and
Implementation. International Thomson Computer Press, London, UK, 1996.

14. B. Kiepuszewski. Expressiveness and Suitability of Languages for Control Flow Modelling
in Workflows. Phd thesis, Queensland University of Technology, Brisbane, Australia, 2003.

15. E. Kindler. On the Semantics of EPCs: A Framework for Resolving the Vicious Circle. In
J. Desel, B. Pernici, and M. Weske, editors, Proceedings of 2nd International Conference on
Business Process Management, volume 3080 of Lecture Notes in Computer Science, pages
82–97, Potsdam, Germany, 2004. Springer-Verlag.

16. M. Leuschel and H. Lehmann. Coverability of Reset Petri Nets and other Well-Structured
Transition Systems by Partial Deduction. In J. Lloyd et al., editors, Proceedings of Compu-
tational Logic 2000, volume 1861 of Lecture Notes in Artificial Intelligence, pages 101–115,
London, UK, 2000. Springer-Verlag.

17. F. Leymann and D. Roller. Production Workflow: Concepts and Techniques. Prentice-Hall
PTR, Upper Saddle River, New Jersey, USA, 1999.

18. P. Rittgen. Modified EPCs and their Formal Semantics. Technical Report 99/19, Institute of
Information Systems, University Koblenz-Landau, Koblenz, Germany, 1999.

19. A. Yakovlev, M. Kishinevsky, A. Kondratyev, L. Lavagno, and M. Pietkiewicz-Koutny. On
the Models for Asynchronous Circuit Behaviour with OR Causality. Formal Methods in
System Design, 9(3):189–233, 1996.

