
Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

SAC 2003, Melbourne, Florida, USA.
© 2003 ACM 1-58113-624-2/03/03…$5.00.

Organizational Modeling in UML and XML in the context of
Workflow Systems

W.M.P. van der Aalst
Faculty of Technology Management
Eindhoven University of Technology

 Eindhoven, The Netherlands
+31 (40) 247 4295

w.m.p.v.d.aalst@tm.tue.nl

Akhil Kumar
Smeal College of Business

Penn State University
University Park, PA 16802, USA

+1 (814) 863-0034
akhilkumar@psu.edu

H.M.W. Verbeek
Faculty of Technology Management
Eindhoven University of Technology

 Eindhoven, The Netherlands
+31 (40) 247 2181

h.m.w.verbeek@tm.tue.nl

ABSTRACT
Workflow technology plays a key role as an enabler in E-Com-
merce applications, such as supply chains. Until recently the major
share of the attention of workflow systems researchers has gone to
the exchange of information in cross-organizational processes.
Increasingly the focus is shifting from the exchange of data to sup-
port for interorganizational workflow processes. One of the initia-
tives in this direction has been XRL (eXchangeable Routing
Language), an extendible instance-based language having an XML
syntax and Petri-net semantics. In this paper, we move to the next
level by extending XRL with organizational entities, structures,
and rules. Hence, we describe an organizational model first in
UML and then convert it into an XML DTD. Our organizational
model allows for the specification of non-human resources, collec-
tions of resources (e.g., departments, teams, etc.), availability of
resources, delegation, and role inheritance. Additional features of
our proposal are the tight integration of organizational concepts
and routing concepts. An important goal of this work is to create
standard for organizational modeling much like the X.500 standard
for directories.

Keywords
workflow systems, organizational modeling, UML, XML, E-com-
merce applications, interoperability.

1. INTRODUCTION
With the rapid expansion seen in electronic commerce, there is a
major need for infrastructures and frameworks that can be used to
implement inter-organizational workflows. In particular it is essen-
tial to provide support for routing of documents across organiza-
tions in a standardized and yet flexible manner to enable open
electronic commerce. Developing more homogeneous languages
for various electronic commerce activities is one way to facilitate
increased productivity and interoperability.

There are two important perspectives in a workflow system: the
process flow perspective and the organizational perspective. The
former describes the routing and coordination of tasks within a
process, while the latter deals with realities of the organization. In
[2,3], an architecture and a language called XRL (eXchangeable

Routing Language) are described that provide support for routing
of workflow among trading partners for Internet-based electronic
commerce services. However, for the successful implementation of
workflows in organizations, it is also necessary to model organiza-
tional policies carefully so that the workflow system can determine
who will do the work.

The decision regarding who must perform a task is an important
aspect of organizational policy in a workflow system. Moreover,
there are two dimensions related to task assignment: a task assign-
ment could be made based on role (as in role-based access control
systems often referred to with the acronym RBAC [14]), or a task
could be assigned to a specific employee or user. The second
dimension relates to whether the task assignment is made to a team
(i.e., a group of users or roles), or to a single individual.

Another aspect of organizational modeling relates to non-human
resources needed to accomplish a task. Examples of such resources
are equipment like machines, computers, videoconference setup
etc., and physical space resources such as conference rooms, class-
rooms, meeting rooms, etc. Thus, an organization should be able to
model a task to be performed by a team consisting of roles and/or
individuals, at a specific location using certain kinds of equipment.
For example, a personnel committee consisting of four professors
and the department chairman must meet to perform the evaluation
of candidates task in a conference room equipped with 5 web-
enabled PCs and a slide projector.

Therefore, the important elements to be modeled are tasks, roles,
users, teams, equipment, and space. While contemporary work-
flow systems can handle tasks, roles and users, and combine them
with routing constructs to describe processes, they are seriously
lacking in the handling of notions like teams, equipment and space.
Moreover, it is also necessary to model organizational structure in
the form of a role hierarchy, ability to make delegations (of various
types such as role-role, user-role, role-user and user-user), and var-
ious organizational constraints. Some important examples of con-
straints are binding of duties and separation of duties constraints,
where the same user may be required to do multiple tasks (in the
case of binding) or prohibited from doing so (in the case of separa-
tion).

In this paper, we develop a formal organizational model to capture
these requirements. The model is first described in UML and then
converted into an equivalent DTD. The UML representation is
intuitively appealing and easy to understand; however, XML offers
additional advantages as a modeling paradigm, such as greater
interoperability. In [2,3], XML was used to describe the routing
semantics in the form of a DTD. Therefore, describing the organi-
zational policy in XML also complements this work very well.
Since XML has very fast become the lingua franca of the web, a

model built in XML can easily be exchanged between different
units of the same organization and also across organizations.

In addition to being a well-known language for modelling, XML
also lends itself easily to querying. An organizational model needs
to be queried all the time. Thus, in addition to simple queries like
finding a user’s phone number or skill set, there is also a need to
find answers to queries like who is the most suitable delegate for
Bill or Sue if they are not available to do a task. An organizational
model constructed in XML can be queried easily using a query lan-
guage like XPath [10] or XQuery [9].

The organization of this paper is as follows. Section 2 will briefly
give background information on XRL and present an organiza-
tional model in UML. Section 3 shows how to convert the UML
model into XML and gives a DTD for it. Section 4 will illustrate
how the DTD can be used to create instances that correspond to the
model. Section 5 will discuss other issues in the context of this
modelling approach and compare our work with related work.
Finally, Section 6 will conclude the paper.

2. ADDING THE ORGANIZATIONAL PER-
SPECTIVE TO XRL
2.1. Background
XRL (eXchangeable Routing Language) is an XML data type defi-
nition (DTD) for describing workflow instances. It consists of ele-
ments for describing tasks and also various coordination
requirements between them such as sequence, parallel,
any_sequence, etc. For a full DTD we refer the reader to [2,3].
Once a workflow instance has been described in XRL, then it can
be parsed and executed by a workflow engine. Previous efforts
towards building such a prototype engine called XRL/Flower have
also been described in [2,3]. However, XRL is basically a process
modelling language that focuses on routing while omitting organi-
zational details. Therefore, we discuss the organizational model in
the next section and later show how it can be incorporated into the
process model of XRL.

2.2. A UML model
We first describe the organization model in UML and then convert
it into XML with an accompanying DTD. The UML organizational
model is shown in Figure 1.

In this UML model, an organization entity is an aggregate of three
other entities: (1) resources, (2) resource types, and (3) collection
(or departments). The resources are subtyped into user and non-
user entities, which in turn are sub-typed into machine and space
entities. Resource_types are abstract entities that group concrete
resources such as: role, machine_type, and space_type. A role is
related to users because a typical role such as manager would com-
prise of many users like Bob, Sue and Hong. In general, one role
can have many users and one user can have many roles. The
can_inherit and can_delegate relationships show the lines of inher-
itance and delegation. It is important to note that the can_delegate
relationship can operate at the role-role, user-user, user-role, and
role-user levels. Just like roles are related to users, machine_type
and space_type are related to machine and space, respectively.
These resource types are introduced to structure the organization
and to allow allocation of resources to work without referring to
specific resources.

Most workflow management systems assume that only one
resource is needed to execute a task. Therefore, it is not possible to
specify that a team of users, a user and a machine, or a user and a
space are required to execute a step in the process. To allow for the
specification and enactment of tasks requiring a collection of users,
machines, and spaces, the organization has a collections entity.
This entity is sub-typed into concrete_collection, typed_collection,
and mixed_collection sub-entities. A concrete_collection refers to
specific resources, e.g., a team of workers specified by enumerat-
ing its members. A typed_collection refers to resource types, e.g., a
selection committee consisting of two full professors and three
associate professors (where full professor and associate professor
refer to roles). A mixed_collection may contain both specific
resources and resource types. The resource_nref entity is used to
allow multiple resource_types to participate in a collection as in
the above committee example (e.g., two full professors). The
availability entity is related to the resource entity to represent the
available time periods for each resource. Finally, the department
entity is associated with the user entity to describe the details of
the department (such as name, manager, etc.) each user belongs to.

3. CONVERTING UML INTO AN XML DTD
The next step is to convert the UML model into an XML DTD so
that various details of an organization can be described in XML.
This DTD called XRL_ORG.DTD is shown in the Appendix. In
large part, the mapping from UML model to a DTD treats each
entity in the UML diagram as an XML element. However, some
additional elements also have to be introduced. In particular a rela-
tions element is added to capture various relationships present in
Figure 1. The relations element is a child element of organization.
It is used to describe various mappings such as user_role_mapping
(i.e., users are mapped onto roles), machine_machine_type_map-
ping (i.e., machines are mapped onto machine types), and
space_space_type_mapping (i.e., spaces are mapped onto space
types). Second, role inheritance (can_inherit) and delegation
(can_delegate) are also specified using the relations element.

XML documents conforming to the organization DTD can be used
to describe organizational entities, structures, and rules (examples
will be given shortly). As such they can be applied independent of
any routing language, such as XRL. However, our goal is to have a
close link between the process perspective of XRL (as describedFigure 1. UML model for an organization

-first_name
-last_name
-department

-e-mail
-skil l

-login_id
-phone

user

+name
-address

resource

-number
-contact

machine

-building_number
-room_number

-description
-capacity

space

-description
-contact
-phone

non-user

+name
-description

resource_type

role

machine_type

space_type

+name
-description

collection/department

-number

resource_nref

-start_time
-end_time

-status
-reserved_for

av ailability

has

role

user

machine_typemachine

space_typespace

1

organization

mixed_collectionconcrete_collection typed_collection

can_delegate

can_delegate
can_delegate

can_inherit

by the process DTD) and the organizational perspective as
described by the organization DTD. Therefore, we added the fol-
lowing constructs to the original XRL language to build a bridge
with XRL_ORG.DTD.

<!ELEMENT task (event*, resource_binding*)>
<!ATTLIST task

...
function CDATA #IMPLIED
...

>
<!ELEMENT resource_binding ((user_ref | machine_ref | space_ref | role_nref |
machine_type_nref | space_type_nref | named_collection_ref | concrete_collection
| typed_collection | mixed_collection)*) >

The above snippet shows that a task has two sub-elements. The
event* sub-element gives the set of events to be generated on com-
pletion of the task. The resource_binding* sub_element represents
one or more resources required to complete this task. Therefore,
each task may contain multiple resource bindings. Each resource
binding refers to a set of concrete resources (users, machines, and
spaces), resource types (roles, machine types, and space types),
named collections (predefined teams), and concrete/typed/mixed
collections (ad-hoc collections of typed and/or untyped resources).

The two models in UML and XML are comparable in large part.
However, there are some minor differences. The XML DTD for
instance has attributes associated with the can_delegate element.
The transitive attribute is used to specify whether the can_delegate
relationship is a transitive one (i.e., if A can delegate to B, and B
can delegate to C, then does it follow that A can delegate to C).
Moreover, the restrictions attribute can be used to impose restric-
tions or constraints on the delegate relationship. Of course, this can
be captured in UML also by introducing several new entities and
assigning similar attributes to each one of them, but for simplicity
it has been omitted from Figure 1.

4. USING THE DTD TO BUILD AN ORGA-
NIZATIONAL MODEL
The organization is the highest level element in the organization
DTD. As described above, it contains four sub-elements:
resources, resource_types, collections and relations. These ele-
ments and their sub-elements will be described in this section in
more detail along with examples.

4.1. Resources and Resource_types
We first give an example of resource_types and resources below
along with the main subelements under them. The main sub-ele-
ment under resource_types are role, machine_types and
space_type. The main sub-elements under resources are user,
machine and space.

<organization><resources>
<user name="u.b_jones" first_name="Bob"

last_name="Jones" department="d.finance"/>
<user name="u.s_brown" first_name="Sue"

last_name="Brown" depar tment="d.finance"/>
<user name="u.j_donk" first_name="Jim"

last_name="Donk" department="d.marketing"/>
<user name="u.l_hong" first_name="Lee"

last_name="Hong" depar tment="d.technology"/>
<user name="u.b_boss" first_name="Big"

last_name="Boss" department="d.marketing"/>
<machine name="m.pc_1" description="PC 1"/>
<machine name="m.projector_1" description="Projector 1"/>
<space name="s.room_301" room_number="301" capacity="10"/>
<space name="s.room_307" room_number="307" capacity="30"/>
<space name="s.room_321" room_number="321" capacity="50"/>

</resources><resource_types>
<role name="r.professor" description="Professor"/>
<role name="r.associate_professor" description="Associate Professor"/>

<role name="r.assistant_professor" description="Assistant Professor"/>
<role name="r.post_doc" description="Post Doc"/>
<role name="r.vp_finance" description="VP Finance"/>
<role name="r.vp_marketing" description="VP Marketing"/>
<role name="r.vp_technology" description="VP Technology"/>
<machine_type name="mt.pc" description="PC"/>
<machine_type name="mt.projector" description="Projector"/>
<space_type name="st.conference_room"

description="Conference Room"/>
</resource_types></organization>

4.2. Creating a resource binding
Next we introduce the resource_binding element which plays a key
role in connecting a task with the resources required to perform it.
The example below shows how a resource binding can be associ-
ated with a specific task, in this case the task named
”review_staff”. Staff can be reviewed by a professor and an associ-
ate professor. Alternatively, two associate professors and one post
doc may also review staff. Finally, it may also be done by Big
Boss. Thus, these are three alternative ways of reviewing staff,
hence the three bindings.

<task name="review_staff"><resource_binding><typed_collection>
<role_nref name="r.professor"/>
<role_nref name="r.associate_professor"/>

</typed_collection></resource_binding><resource_binding><typed_collection>
<role_nref name="r.associate_professor" number="2"/>
<role_nref name="r.post_doc"/>

</typed_collection></resource_binding><resource_binding><concrete_collection>
<user_ref name="u.b_boss"/>

</concrete_collection></resource_binding></task>

Note that one of the possible bindings requires two associate pro-
fessors. Apparently, it is possible that a binding requires multiple
items of some resource type. Therefore, we use role_nref,
machine_type_nref, and space_type_nref in collections. These ele-
ments have an optional number attribute that denotes the number
of items required. This attribute is not needed for resources,
because they are unique (there is only one Big Boss.)

4.3. Including non-human resources in binding
The next example shows another kind of binding. It first expresses
the idea that there must be two professors, two associate profes-
sors, and two assistant professors to hire staff. Then, it also speci-
fies the requirements for a conference room, two PCs, and a
projector.

<task name="hire_staff"><resource_binding><mixed_collection>
<role_nref name="r.professor" number="2"/>
<role_nref name="r.associate_professor" number="2"/>
<role_nref name="r.assistant_professor" number="2"/>
<machine_type_nref name="mt.pc" number="2"/>
<machine_type_nref name="mt.projector"/>
<space_type_nref name="st.conference_room"/>

</mixed_collection></resource_binding></task>

In this way it is possible to combine human resource needs with
needs for other resources such as space and equipment.

4.4. Modeling Departments and Teams
Next we discuss how a team can be defined. A department or a
team is modeled with a collections element, which consists of one
or more named_collection sub-elements. Named_collection in turn
has three sub-elements: concrete_collection, typed_collection and
mixed_collection. An executive team may be defined as follows:

<named_collection name="t.executive"
description="Executive Team"><typed_collection>
<role_nref name="r.vp_finance"/>
<role_nref name="r.vp_marketing"/>
<role_nref name="r.vp_technology"/>

</typed_collection></named_collection>

The above team consists of the VPs for Finance, Marketing and
Technology. Since there is no number attribute, its default value is
1.

Now, a resource binding may include the executive team as shown
below.

<task name="hire_exec_staff"><resource_binding>
<named_collection_ref name="t.executive"/>
<machine_type_nref name="mt.pc" number="2"/>
<machine_type_nref name="mt.projector"/>
<space_type_nref name="st.conference_room"/>

</resource_binding></task>

The notion of teams makes it easier to specify resource bindings.
Moreover, multiple teams can also be combined together in a
resource binding as well.

4.5. Inheritance and Delegation Hierarchies
Inheritance and delegation are specified by means of can_inherit
and can_delegate elements, which are sub-elements of the relations
element.

<relations><can_inherit>
<role_ref name="r.professor"/>
<role_ref name="r.associate_professor"/>

</can_inherit><can_inherit>
<role_ref name="r.associate_professor"/>
<role_ref name="r.assistant_professor"/>

</can_inherit><can_delegate>
<role_ref name="r.professor"/>
<role_ref name="r.associate_professor"/>

</can_delegate><can_delegate>
<role_ref name="r.professor"/>
<user_ref name="u.b_jones"/>

</can_delegate></relations>

These hierarchies can be used to determine all the attributes a
given role might inherit from other roles, and to also find the dele-
gates for a particular role or a user. We will see later how such hier-
archies can be queried in a straightforward manner.

Note that in these relations, we do not need an optional number
attribute for resource types. Therefore, we use role_ref,
machine_type_ref, and space_type_ref here.

4.6. Other mapping relations between elements
Above we saw two kinds of relations, which are sub-elements of
the relations elements. Three other relations are required to associ-
ate a user with a role, a space with a space type, and a machine
with a machine type. This is accomplished by use of
user_role_mapping, space_space_type_mapping and machine_-
machine_type_mapping elements. These elements are sub-ele-
ments of relations. These mappings would allow finding a user
with a sepcific role, a space (e.g., a room) of a particular type, say
a conference room, or a machine of a particular type, say a PC. The
example below illustrates these mappings.

<relations><user_role_mapping>
<user_ref name="u.b_jones"/>
<role_ref name="r.associate_professor"/>

</user_role_mapping><space_space_type_mapping>
<space_ref name="s.room_301"/>
<space_type_ref name="st.conference_room"/>

</space_space_type_mapping><machine_machine_type_mapping>
<machine_ref name="m.pc_1"/>
<machine_type_ref name="mt.pc"/>

</machine_machine_type_mapping></relations>

4.7. Modeling Availability of Resources
Another feature of the model is handling availability. Availability
is a sub-element of relations. The status of any resource can thus
be represented with availability sub-elements as follows.

<relations><availability start_time="05-20-02:0800"
end_time="05-20-02:1700" status="available">
<user_ref name="u.b_jones"/>
<machine_ref name="m.pc_1"/>

</availability></relations>

The above simply describes that both Bob Jones and PC 1 are
available from 8 AM to 5 PM on May 20, 2002. The status field
may have other values such as reserved, in-use, etc. More such ele-
ments can be added for tracking the status of other resources.

4.8. Function Separation and Binding
Function separation and binding requirements are specified using
the new function attribute of a task. Thus, if a post doc may not be
reviewed and appointed by the same individual, this could be
expressed as follows.

<task name="review_post_doc"><resource_binding>
<role_nref name="r.professor"/>

</resource_binding><resource_binding>
<role_nref name="r.associate_professor"/>

</resource_binding></task>
<task name="appoint_post_doc"

function="diff_user(review_post_doc)"><resource_binding>
<role_nref name="r.professor"/>

</resource_binding><resource_binding>
<role_nref name="r.associate_professor"/>

</resource_binding></task>

The above description says that though professors and associate
professors may review and appoint post docs, the specific individ-
uals of both tasks must not be the same. Similarly, other functions
for this attribute could be:

• same_user(task name): The same user who did another task
must do current task

• diff_role(task name, …, task name): The role that performed
one or more other tasks must not perform current task

• same_role(task name): The role that performed another task
must perform current task

• higher_role(task name, …, task name): The role that performs
current task should be higher in the role hierarchy than the one
which performed one or more other tasks.

• lower_role(task name, …, task name): The role that performs
current task should be lower in the role hierarchy than the one
which performed one or more other tasks.

• not(user name, …, user name): prohibit a list of users.

If two tasks are to occur in a sequence, then the later task should
contain the function attribute that relates the two tasks; however, if
two tasks are in parallel, then any one of them can contain the
function attribute.

It is also possible to combine multiple functions. In the above
example it would be reasonable to say,

function="diff_user(review_post_doc), same_role(review_post_doc)"

This would imply that a post doc should be appointed by some-
body in the same role as the role of the individual who performed
the review, however, it must be a different individual.

Finally, some functions may have multiple arguments. Thus, if the
function attribute appointing post docs has a value of
“higher_role(review_post_doc, check_post_doc)”, it means that a
post doc can only be appointed by somebody who occupies a
higher role in the inheritance hierarchy than the ones who
reviewed him and checked his credentials.

5. DISCUSSION AND RELATED WORK
We described our approach for creating a detailed organization
model. Although a detailed discussion of the implementation

architecture is beyond the scope of this paper, we expect that a
workflow engine will have to be suitably modified to incorporate
organizational policies. Thus, when a task has to be assigned, the
workflow engine may consult a policy module to find the appropri-
ate resource bindings. An assignment of a task may thus involve
informing Bob, Sue and Chen that they have a meeting scheduled
for them at 3 PM on May 31 in conference room C105, as opposed
to informing each user that a task is waiting for them and leaving
the remaining details for them to figure out.

This approach has several interesting features. First, it is relatively
succinct and we showed that it could capture a lot of useful infor-
mation about organizational structure and policy. Clearly, there is
always a trade-off between simplicity and expressive power, and
our approach gives considerable expressive power within an intui-
tive and easy to learn framework. Secondly, the model is expressed
in XML, which is understood very widely. This can help in inter-
organizational interactions in various ways. Two organizations
planning to collaborate can send their models to each other, and
this information can then be used to enhance understanding and
exchange. For example, it can be used to create inter-organiza-
tional teams, which is a prerequisite before collaboration can com-
mence. Thirdly, the approach is also extendible. Although we
expect the DTD to become a standard (say, like the X.500 standard
for directories [8]), different industries or even groups of organiza-
tions may wish to expand the DTD. Thus, the organization DTD
would be a least common denominator, but it may be extended by
adding attributes and elements. For example, additional attributes
like salary could be added to the user attribute, and tasks may be
assigned based on a least-salary-first rule to eligible employees.
Similarly, other elements can be added under resource (e.g., raw
materials in manufacturing) based on the needs of the organization.
In this way, various enhancements are possible.

Research on organizational modeling in workflow systems has
been relatively limited. The RBAC (Role-Based Access Control)
model [11,12,14,15] represents one approach for determining suit-
able users for a task. The salient features of RBAC are that permis-
sions are associated with roles and users are made members of
roles, thereby acquiring the associated permissions. RBAC models
are useful but they have limitations, in particular they are primarily
permission oriented, from a security point of view, and neglect
other aspects of the organization such as resource availability.
They also do not handle delegation very well and lack general que-
rying capabilities. Bussler and Jablonski [6] have also done some
pioneering work in pointing out many limitations of workflow sys-
tems in modeling policy and organizational issues. Several
researchers have developed so-called meta models, i.e., object
models describing the relation between workflow concepts, which
include work allocation aspects. Consider for example some of the
papers by Zur Mühlen [18,19]. Other authors have examined the
issues of security in workflow systems from various different per-
spectives. For a partial list of these efforts and their salient features
see [4,5,7,13,16].

6. CONCLUSIONS
Support for routing of workflows and integrating the workflows
with the organizational model are key to successful implementa-
tion of various E-Commerce applications. Many researchers have
noted the need for such an integration [6,18,19]. However, to the
best of the authors' knowledge, the present work represents the
first effort to describe a detailed organizational model in XML and
to integrate it with a workflow routing model also in XML, in
order to tie the two together in a common framework. The organi-

zation model described by the organization DTD can be used inde-
pendently, and it also complements the XRL process DTD very
well. In particular, the DTD described in this paper captures four
important elements in an organization in a systematic manner.
These elements are: resources (such as users, machines and space),
resource types (such as managers, vice-presidents, PCs, conference
rooms, etc.), collections (such as teams consisting of resources
and/or resource types), and various relationships between
resources and resource types. We also showed how one can model
issues of resource availability and express advanced constraints for
separation and binding of duties. Therefore, we believe this frame-
work is comprehensive.

The advantages of this approach are that it will lead to better,
“organizationally aware” workflow systems, and thereby increase
chances of successful deployment. Moreover, it will also facilitate
interoperability, both between organizations, and across depart-
ments of the same organization. Finally, it will improve the ability
to query an organizational model using an XML query language
such as XPath [10] or XQuery [9]. In future work, we expect to
implement this model using real data from an organization and
measure its effectiveness. Further, a prototype implementation for
a workflow engine based on the process DTD already exists [2],
but it lacks an organizational model. Hence, a next logical step is
to enhance it by incorporating the organization model. It should
also be noted that organizational models contain valuable company
information that many companies may like to keep confidential or
share in a limited way. Hence, there is a need for research on views
that allow a company to expose its model selectively depending
upon how much it trusts the trading partner. Lastly, although two
companies may have the same unde rlying DTD, yet there are dif-
ferences in syntax. While one organization may have a role called
director, another may refer to the same role as supervisor. Hence,
methods may be required for describing the characteristics of roles
in still more detail and mapping them appropriately into one
another.

7. REFERENCES
[1] Aalst, W.M.P. van der, A.H.M. ter Hofstede, B. Kiepusze-

wski, en A.P. Barros. "Advanced Workflow Patterns," In O.
Etzion en P. Scheuermann, editors, 7th International Confer-
ence on Cooperative Information Systems (CoopIS 2000),
volume 1901 of Lecture Notes in Computer Science, pages
18-29. Springer -Verlag, Berlin, 2000.

[2] W.M.P. van der Aalst and A. Kumar. XML Based Schema
Definition for Support of Interorganizational Workflow.
Information Systems Research, 2002 (to appear).

[3] W.M.P. van der Aalst, H.M.W. Verbeek, and A. Kumar. XRL/
Woflan: Verification of an XML/Petri-net based language for
inter -organizational workflows (Best paper award). In K.
Altinkemer and K. Chari, editors, Proceedings of the 6th
Informs Conference on Inform ation Systems and Technology
(CIST -2001), pages 30-45. Informs, Linthicum, MD, 2001.

[4] Atluri, V.; and Huang W.K. An extended Petri net model for
supporting workflows in a multilevel secure environment.
Proceedings of the 10th IFIP WG 11.3 Workshop on Database
Security (1996), 199-216.

[5] Bertino, E.; Ferrari, E.; and Atluri, V. Specification and
enforcement of authorization constraints in workflow man-
agement systems. ACM Transactions on Information and
System Security, 2, 1 (February 1999), 65-104.

[6] Bussler, C.; and Jablonski, S. Policy resolution for workflow
management. Proceedings 28th Hawaii International Confer-
ence on System Sciences Conference (January 1995).

[7] Castano, S.; and Fugini, M. Rules and patterns for security in
workflow systems. Proceedings of the IFIP WG 11.3 Working
Conference on Database Security (August 1998), 59-74.

[8] Chadwick, D. W., Understanding X.500 - The Directory, ©
1994, 1996. Available at http://www.isi.salford.ac.uk/staff/
dwc/Version.Web/Contents.htm

[9] D. Chamberlin, D. Florescu, J. Robie, J. Simeon, and M. Ste-
fanescu. XQuery: A Query Language for XML. W3C Work-
ing Draft. Available at http://www.w3.org/TR/xquery/, 2000.

[10] J. Clark, S. DeRose (ed.) "XML Path Language (XPath) Ver-
sion 1.0", W3C , November 1999. (http://www.w3.org/TR/
xpath)

[11] Ferraiolo, D. F.; and Kuhn, D.R. Role-Based Access Control.
In 15th National Computer Security Conference. NIST/NSA,
554-563, 1992.

[12] Ferraiolo, D. F.; Cugini, J.; and Kuhn, D.R. Role-based access
control: features and motiv ation. Proceedings of the 11th
Annual Computer Security Applications Conference (1995).
IEEE Computer Society Press, 241-248.

[13] Nyanchama, M.; and Osborn, S.L. The role graph model and
conflict of interest. ACM Transaction on Information and
System Security, 1 (1999), 3-33.

[14] Sandhu, R.S.; Coyne, E.J.; Feinstein, H.L.; and Youman, C.E.
Role-based access control models. IEEE Computer, 29, 2
(1996), 38-47.

[15] Sandhu, R.S.; Bhamidipati V.; and Manuawer, Q. The
ARBAC97 model for role-based administration of roles.
ACM Transactions on Information and System Security, 2, 1
(February 1999), 105-135.

[16] Simon, R. and Zurko, M. E. Separation of duty in role-based
environments. Proceedings of the 10th Computer Security
Foundations Workshop (1997), 183-194.

[17] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn.
XML Schema Part 1: Structures. W3C Working Draft, Apr.
2000. http://www.w3.org/TR/xmlschema-1/.

[18] Zur Mühlen, M. Resource modeling in workflow applica-
tions. Proceedings of the 1999 Workflow Management Con-
ference (November 1999), 137-153.

[19] Zur Mühlen, M. Evaluation of workflow management sys-
tems using meta models. Proceedings of the 32nd Hawaii
International Conference on System Sciences (1999).

APPENDIX: THE ORGANIZATION DTD
(XRL_ORG.DTD)
<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT organization (resources?, resource_types?, collections?, relations?)>
<!ELEMENT resources ((user | machine | space)*)>
<!ELEMENT user EMPTY>
<!ATTLIST user

name ID #REQUIRED first_name CDATA #IMPLIED
last_name CDATA #IMPLIED department IDREF #IMPLIED
e-mail CDATA #IMPLIED login_id CDATA #IMPLIED
address CDATA #IMPLIED phone CDATA #IMPLIED
skills CDATA #IMPLIED>

<!ELEMENT machine EMPTY>
<!ATTLIST machine

name ID #REQUIRED description CDATA #IMPLIED
number CDATA #IMPLIED contact CDATA #IMPLIED
address CDATA #IMPLIED phone CDATA #IMPLIED>

<!ELEMENT space EMPTY>
<!ATTLIST space

name ID #REQUIRED building_number CDATA #IMPLIED
room_number CDATA #IMPLIED description CDATA

#IMPLIED
capacity CDATA #IMPLIED contact CDATA #IMPLIED
address CDATA #IMPLIED phone CDATA #IMPLIED>

<!ELEMENT resource_types ((role | machine_type | space_type)*)>
<!ELEMENT role EMPTY>
<!ATTLIST role name ID #REQUIRED description CDATA #IMPLIED>
<!ELEMENT machine_type EMPTY>
<!ATTLIST machine_type name ID #REQUIRED description CDATA #IMPLIED>
<!ELEMENT space_type EMPTY>
<!ATTLIST space_type name ID #REQUIRED description CDATA #IMPLIED>
<!ELEMENT user_ref EMPTY>
<!ATTLIST user_ref name IDREF #REQUIRED>
<!ELEMENT machine_ref EMPTY>
<!ATTLIST machine_ref name IDREF #REQUIRED>
<!ELEMENT space_ref EMPTY>
<!ATTLIST space_ref name IDREF #REQUIRED>
<!ELEMENT role_ref EMPTY>
<!ATTLIST role_ref name IDREF #REQUIRED>
<!ELEMENT machine_type_ref EMPTY>
<!ATTLIST machine_type_ref name IDREF #REQUIRED>
<!ELEMENT space_type_ref EMPTY>
<!ATTLIST space_type_ref name IDREF #REQUIRED>
<!ELEMENT role_nref EMPTY>
<!ATTLIST role_nref name IDREF #REQUIRED number CDATA #IMPLIED>
<!ELEMENT machine_type_nref EMPTY>
<!ATTLIST machine_type_nref name IDREF #REQUIRED number CDATA

#IMPLIED>
<!ELEMENT space_type_nref EMPTY>
<!ATTLIST space_type_nref name IDREF #REQUIRED number CDATA

#IMPLIED>
<!ELEMENT collections (named_collection*)>
<!ELEMENT named_collection (concrete_collection | typed_collection |

mixed_collection)>
<!ATTLIST named_collection

name ID #REQUIRED description CDATA #IMPLIED>
<!ELEMENT named_collection_ref EMPTY>
<!ATTLIST named_collection_ref

name IDREF #REQUIRED>
<!ELEMENT concrete_collection ((user_ref | machine_ref | space_ref)*)>
<!ELEMENT typed_collection ((role_nref | machine_type_nref |

space_type_nref)*)>
<!ELEMENT mixed_collection ((user_ref | machine_ref | space_ref | role_nref |

machine_type_nref | space_type_nref)*)>
<!ELEMENT relations ((user_role_mapping | machine_machine_type_mapping |

space_space_type_mapping | can_inherit | can_delegate | availability)*)>
<!ELEMENT user_role_mapping (user_ref, role_ref)>
<!ELEMENT machine_machine_type_mapping (machine_ref, machine_type_ref)>
<!ELEMENT space_space_type_mapping (space_ref, space_type_ref)>
<!ELEMENT can_inherit (role_ref, role_ref)>
<!ATTLIST can_inherit transitive_flag CDATA #IMPLIED restrictions CDATA

#IMPLIED>
<!ELEMENT can_delegate ((role_ref | user_ref), (role_ref | user_ref))>
<!ATTLIST can_delegate transitive_flag CDATA #IMPLIED restrictions CDATA

#IMPLIED>
<!ELEMENT availability ((user_ref | machine_ref | space_ref)*)>
<!ATTLIST availability

start_time CDATA #REQUIRED end_time CDATA #REQUIRED
status CDATA #REQUIRED reserved_for CDATA #IMPLIED>

	1. Introduction
	2. Adding the organizational perspective to XRL
	2.1. Background
	2.2. A UML model

	3. Converting UML into an XML DTD
	4. Using the DTD to build an organizational model
	4.1. Resources and Resource_types
	4.2. Creating a resource binding
	4.3. Including non-human resources in binding
	4.4. Modeling Departments and Teams
	4.5. Inheritance and Delegation Hierarchies
	4.6. Other mapping relations between elements
	4.7. Modeling Availability of Resources
	4.8. Function Separation and Binding

	5. Discussion and Related Work
	6. Conclusions
	7. References
	Figure 1. UML model for an organization

