
o
m
a
c
S
l
p
m

Pattern-based action engine: Generating process management actions using
temporal patterns of process-centric problems
Gyunam Park a,∗, Daniel Schuster b, Wil M.P. van der Aalst a
a Process and Data Science Group (PADS), RWTH Aachen University, Ahornstr. 55, Aachen, 52074, Nordrhein-Westfalen, Germany
b Fraunhofer FIT, Schloss Birlinghoven, Konrad-Adenauer-Str., Sankt Augustin, 53757, Nordrhein-Westfalen, Germany

A B S T R A C T

As business environments become more competitive, organizations strive to improve their business processes
to reduce costs and increase quality and productivity. As process improvement traditionally embraces manual
creative tasks that are time-consuming and labor-intensive, the need for automating it arises. Action-Oriented
Process Mining (AOPM) aims to support automated process improvement by leveraging various process mining
techniques. To that end, AOPM first monitors the presence of operational constraints, i.e., operational problems,
in business processes, e.g., a high waiting time for patients to register. Next, it produces interim management
actions designed to address these transient problems by analyzing the monitoring results. For instance, if an
excessive waiting time persists for more than a week, the system might recommend dispatching additional
resources for the upcoming week. Contrary to the mature process mining support for monitoring operational
constraints, the action part is typically missing in today’s process mining tools. In this work, we propose an
action engine to support the automatic generation of actions. It analyzes temporal patterns of monitoring
results and produces action plans that describe the execution of management actions. We have demonstrated
a use case using the data of a Dutch financial institute to evaluate the feasibility of the proposed action engine
and conducted experiments to evaluate its effectiveness.
1. Introduction

Organizations have endeavored to improve their business processes
using various approaches. Business process reengineering aims to sys-
tematically manage process improvements by making changes in peo-
ple, processes, and technology. Hammer (1990) provided a collection
of principles for improving business processes derived from case studies
f successful business processes. Business process redesign focuses on
ore neutral changes in terms of size and pace of changes. Reijers
nd Liman Mansar (2005) propose a framework for business pro-
ess redesign and 29 best practices based on the framework. Six
igma/Lean Management aims to focus on identifying process prob-
ems and then eliminating them. Whereas Six Sigma identifies process
roblems by monitoring deviations in a number of process performance
easures (Pyzdek and Keller, 2014), Lean Management identifies pro-

cess problems by analyzing various ‘‘wastes’’ (Martínez-Jurado and
Moyano-Fuentes, 2014).

Such efforts to improve business processes commonly require man-
ual activities that are time-consuming, expensive, and labor-intensive (Van-
wersch et al., 2015). Beerepoot et al. (2023) enlist automating business

∗ Corresponding author.

process improvements as one of ‘‘the biggest business process man-
agement problems to solve before we die’’. The goal is to incorporate
process improvement as a part of daily business and incrementally
improve processes with increasing degrees of autonomy.

Action-Oriented Process Mining (AOPM) aims to achieve automated
and continuous process improvement by leveraging process mining
techniques (van der Aalst and Carmona, 2022). Process mining provides
a wide range of techniques both for backward-looking (e.g., finding a
bottleneck in a process) and forward-looking insights (e.g., predicting
a bottleneck). Backward-looking process mining techniques include
process discovery, conformance checking, and performance analysis,
whereas forward-looking process mining techniques include deviation
detection, prediction, and recommendation (van der Aalst, 2016).

The framework for AOPM embodies two major functional compo-
nents to automatically generate process management actions (Park and
van der Aalst, 2022). First, constraint monitoring analyzes event data
to evaluate the presence of various operational constraints in business
processes. An operational constraint in business processes represents
an operational problem. For instance, an Order-To-Cash (O2C) process

E-mail addresses: gnpark@pads.rwth-aachen.de (G. Park), daniel.schuster@fit.fraunhofer.de (D. Schuster), wvdaalst@pads.rwth-aachen.de
(W.M.P. van der Aalst).
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Fig. 1. (a) Examples of operational constraints (i.e., operational problems) and actions in an O2C process, (b) Existing action engines analyzing operational constraints as
temporally independent and point-based data and producing conflicting action plans, (c) Our proposed action engine analyzing operational constraints as temporally dependent
and interval-based data and producing conflict-free action plans.
i

may have the operational constraints shown in Fig. 1(a): C1, C2, and
C3. The insights from backward-looking process mining techniques can
be used to elicit such operational constraints to monitor, and various
backward-looking and forward-looking monitoring techniques can be
used to track the (potential) presence of such operational constraints.
Second, an action engine analyzes the monitoring results and generates
necessary management actions. For instance, consider actions A1, A2,
nd A3 depicted in Fig. 1(a) to mitigate the risk caused by the presence
f operational constraints.
In contrast to extensive support for constraint monitoring, an action

ngine is missing in most of today’s process mining tools. Celonis
ction Engine is one of the few examples implementing action-oriented
rocess mining (Badakhshan et al., 2019). Based on a trigger-action
rogramming model (Ur et al., 2016), the action engine generates
riggering signals by analyzing the event data and executes the actions
orresponding to these signals to the source system. For instance, as
hown in Fig. 1(b), it analyzes the presence of operational constraint
2 and, if so, triggers action A1 and A2 for 3 days. In Park and van der
Aalst (2022), the cube-based action engine is proposed to use multi-
dimensional queries to analyze the aggregated value, e.g., if C1 occurs
more than once a week, then trigger actions.

The existing approaches have two limitations. First, they consider
operational constraints as temporally independent and point-based
data, analyzing relatively simple patterns, e.g., the mere presence of
operational constraints. However, in reality, operational constraints
are (1) temporally dependent, e.g., C1 is followed by C2, and (2)
2

c

interval-based, e.g., C1 is present from 1.Feb. to 2.Feb. By analyzing
operational constraints as temporally dependent and interval-based
data, we enhance an action engine to analyze the temporal pattern
of operational constraints, as shown in Fig. 1(c). Second, the existing
approaches consider actions as being conflict-free. However, in reality,
actions may have conflicts, i.e., some actions cannot be executed
simultaneously. For instance, A2 and A3may have conflicts, i.e., adding
more staff to support price changes cannot be simultaneously executed
with disabling the activity.

In this work, we propose a pattern-based action engine consisting of
three phases. First, we design action graphs that are graphical notations
to specify how to analyze temporal patterns of operational constraints
and how to generate the corresponding actions, using, e.g., domain
knowledge. Next, based on the action graphs, we generate actions by
analyzing constraint instances, i.e., the record of constraint monitoring.
Finally, we plan the generated actions by considering possible conflicts
between the actions. We evaluate the feasibility of the proposed action
engine using a real-life loan application process of a Dutch financial
institute. Moreover, we conduct experiments to evaluate the scalability
and performance of the action engine.

The remainder is organized as follows. We present related work in
Section 2. Next, we explain preliminaries in Section 3. Afterward, we
present the proposed action engine in Section 4. Section 5 presents the
evaluation of the proposed approach. Finally, Section 6 discusses the
mplication and limitations of the proposed approach, and Section 7

oncludes this paper.
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2. Related work

This section presents the related work in business process reengi-
neering & redesign, and action-oriented process mining. Furthermore,
we introduce several approaches to analyzing temporal patterns of
interval-based data. Finally, we present literature on process improve-
ment actions to introduce various available management actions that
can incrementally improve business processes.

2.1. Business process reengineering and redesign

The drive to improve business processes is an ongoing pursuit (Du-
mas et al., 2013). Business process engineering, an early systematic ap-
roach to this endeavor, aims for transformational changes across peo-
le, processes, and technology (Hammer, 1990). It aspires to radically
estructure an organization’s existing processes, aiming for significant
mprovements in performance, efficiency, and effectiveness.
In contrast, business process redesign places emphasis on more moder-

te adjustments, with a focus on refining existing processes rather than
omplete transformation (Mansar and Reijers, 2007). Reijers and Liman
Mansar (2005) offer a comprehensive framework for business process
redesign, highlighting six key elements to consider during redesign
efforts. Based on these elements, the authors share 29 best practices for
process redesign, derived from case studies and expert opinions. Fehrer
et al. (2022) suggest a tool, Assisted Business Process Redesign (ABPR),
to streamline the redesign process. As a data-driven, iterative approach,
ABPR targets specific performance objectives. It delivers four tiers of
recommendations, with each tier increasing in domain and use case
specificity. The proposed reference architecture serves as a template
for new instantiations, addressing the current void in available tools.

2.2. Action-oriented process mining

Recent developments suggest various methods for producing pre-
scriptive actions based on predicted performance and risk of process
instances. Kubrak et al. (2022) suggest a comprehensive framework to
categorize prescriptive process monitoring techniques. One of the core
dimensions of this framework is the objective, which classifies tech-
niques into two main categories: those focused on reducing negative
outcomes, such as defect rates, and those aiming to optimize a specific
performance metric, like cycle time. For example, the work of Conforti
et al. (2015) fits into the first category with its goal of minimizing
risks in ongoing process instances. Conversely, the method by Bozorgi
et al. (2021) aligns with the second category, aiming to optimize the
cycle time of processes. Another key dimension in the framework is
type of actions prescribed to meet the objectives. This dimension iden-
tifies three primary types of actions: resource allocation, control flow
adjustments, and alarm generation. For example, Conforti et al. (2015)
deploy techniques that generate actions concerning resource allocation.
Their approach predicts the risk levels of running process instances
and then optimizes resource allocations based on these predictions.
Similarly, Weinzierl et al. (2020) focus on control flow adjustments
by recommending the next best activities based on key performance
indicators. Lastly, Fahrenkrog-Petersen et al. (2022) belong to the
alarm generation category, as their approach aims to produce alarms
for predicted problematic instances. Their method further employs a
cost model to optimize these alarms, thereby capturing the trade-offs
between different types of alarms.

Celonis Action Engine (Badakhshan et al., 2019), a part of Celo-
nis Execution Management System (EMS), is a representative effort to
achieve the goal of action-oriented process mining, i.e., turning di-
agnostics into actions. It analyzes event data to produce signals and
execute necessary actions to source systems based on the signals.
In Park and van der Aalst (2020), a systematic framework for action-
3

oriented process mining is suggested to transform event data into
process-centric diagnostics and the diagnostics into needed manage-
ment actions instead of generating actions in an ad-hoc manner. Based
on the framework, a cube-based action engine (Park and van der Aalst,
2022) is suggested to systematically turn diagnostics to actions. The
action engine enables multi-dimensional queries to analyze aggregated
diagnostics values and trigger the corresponding action.

Existing approaches in action-oriented process mining, however,
consider operational constraints as temporally independent and point-
based data, generating actions based on relatively simple occurrence
rules (cf. Fig. 1). Moreover, they do not consider possible conflicts
between actions that are prevalent in reality when triggering the gen-
erated actions. This paper tackles this research gap by proposing a
pattern-based action engine to analyze complex temporal patterns of
operational constraints and produce conflict-free actions by considering
possible conflicts between the actions. Additionally, in contrast to exist-
ing prescriptive process monitoring techniques that focus on individual
process instances, our proposed action engine operates at the process
level, tackling operational constraints across multiple process instances.

2.3. Temporal pattern mining

Operational constraints within business processes often manifest
as temporal patterns that indicate problematic situations requiring
actions. Domain experts, knowledgeable in their specific processes, are
typically responsible for defining these patterns. However, this task
may be challenging given the complexity of operational constraints
in business processes. One potential solution is the automation of
temporal pattern discovery from the historical record of constraint
monitoring, thereby facilitating the identification and characterization
of these problematic situations. This is where temporal pattern mining,
a relatively young research field, plays a role.

Temporal pattern mining aims to analyze temporal patterns in sym-
bolic time intervals, also known as interval-based data. Villafane et al.
(2000) propose an initial approach to analyze containments of time
intervals in multi-symbolic time interval series. Kam and Fu (2000) use
Allen’s temporal relations (Allen, 1983) to compose frequent temporal
patterns, called A1 patterns. An A1 pattern represents the temporal rela-
tion between an existing temporal pattern and the next symbolic time
interval. However, the temporal relations among the time intervals in
A1 patterns are ambiguous since the temporal relations are defined only
among the pairs of successive intervals (Kam and Fu, 2000). Höppner
(2001) presents a nonambiguous representation of temporal patterns
by a 𝑘2 matrix representing all of the pair-wise relations within a 𝑘-
sized Time Intervals Related Pattern (TIRP). Later, the representation
was simplified to the sequence of symbolic time intervals and the
conjunction of the pair-wise temporal relations among time intervals
by removing redundant temporal relations, i.e., the inverse of Allen’s
temporal relations (Allen, 1983).

Papapetrou et al. (2009) propose two approaches for generating
TIRP trees: Breath First Search (BFS)-based and Depth First Search
(DFS)-based approaches. The former enumerates the node at each
level before proceeding to the next level, whereas the latter enumer-
ates each path up to the leaves as a greedy approach. Moreover,
they present a hybrid approach that combines both approaches based
on the Sequential Pattern Mining Algorithm (SPAM) (Ayres et al.,
2002) mining method. Moskovitch and Shahar (2015) propose the
KarmaLego algorithm that efficiently generates candidate TIRPs by
exploiting the transitivity property of temporal relations. Harel and
Moskovitch (2021) suggest TIRPClo to efficiently discover the complete
set of frequent closed TIRPs, i.e., a compact subset of all the frequent
TIRPs, from which their complete information can be revealed.

Wu and Chen (2007) propose TPrefixSpan for mining nonambiguous
temporal patterns from interval-based events by adopting a sequential
mining algorithm PrefixSpan (Pei et al., 2004). The proposed approach

represents each time interval as a start-time event and an end-time
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event and discovers frequent sequences of the start-time and end-time
events.

In Martini et al. (2023), the authors introduce concurrency-aware
process execution variants that account for time interval data of activ-
ities. As these variants represent a tree structure, frequent patterns can
be mined using frequent subtree mining approaches, such as Asai et al.
(2004), Chi et al. (2004). The process mining tool Cortado (Schuster
et al., 2023) features frequent pattern mining from concurrency-aware
process execution variants.

In this work, we use Cortado (Schuster et al., 2023) in the evaluation
of our proposed action engine. By exploiting the tailored approach to
analyze business processes, we discover frequent temporal patterns of
operational constraints and identify relevant problems to tackle with
actions generated by our proposed action engine. In particular, the tool
supports the discovery of temporal patterns in a binary tree structure
that facilitates the interpretation by domain experts. Moreover, the tool
is publicly available, ensuring the reproducibility of our evaluation
results.

2.4. Process management actions

In this work, we conceptualize an action as a change in Process-
Aware Information Systems (PAISs) that include ERP (Enterprise Re-
source Planning), CRM (Customer Relationship Management), WFM
(Workflow Management Systems), and BPMS (Business Process Man-
agement Systems) (Dumas et al., 2005). In contrast to data- or function-
centered information systems, PAISs are characterized by a strict sepa-
ration of process logic and application code. The process logic dictates
the order and conditions for the execution of various activities within
a process, e.g., order confirmations only after order payments. The
application code includes business logic, user interface, data manip-
ulation, computations, interactions with other systems, etc. Examples
include calculating the total cost of items in an order, processing user
authentication, communicating with the payment gateway to process
the transaction, and updating the database.

An action corresponds to a change in the process logic or the
application code. In the following, we explain actions in process logic
and ones in application code.

2.4.1. Actions in process logic
Several approaches have been proposed to change the process logic

of PAISs: process redesign, process configuration, and process adaptation.
The process logic of PAISs is often described by explicit process models,
e.g., Workflow Nets (van der Aalst, 1998) and Business Process Model
and Notation (BPMN) (Grosskopf et al., 2009). Such a process model
prespecifies activities to be executed, their control flow dependencies,
the organizational entities performing the activities, the data objects
manipulated by them, and the software applications (e.g., order man-
agement systems) needed. Based on a process model, process instances
can be created at run-time, each representing a concrete business case
(e.g., an order by customer Adams). Process redesign aims to improve
business processes by modifying process models at design time and,
thus, influencing the process instances created at run-time by the
model. Control flow patterns are used to modify process models, e.g., by
enumerating different alternatives in the process model or by allowing
activities to be executed in parallel (Schonenberg et al., 2008).

However, it would be too costly for organizations to design and
implement standardized business processes from scratch. For these
reasons, there is a great interest in capturing common process knowl-
edge only once and using it in terms of reference process models
(reference processes for short). Process configuration aims to design a
reference process model capturing the behavior of all process variants;
i.e., a reference process model merges a multitude of process variants
into one configurable model capturing both the commonalities and
the differences of the process variants (Rosa et al., 2009). In such
4

a reference process model, variation points are represented in terms
of configurable nodes and edges (Rosa et al., 2009). By configuring
these, the behavior of the reference process model can be customized
to the given context. Modeling languages supporting this approach
include Configurable Event-driven Process Chains (C-EPC) (Rosemann
and van der Aalst, 2007) and C-YAWL (Gottschalk, 2009).

A business process cannot always be executed in accordance with
rocess models at design time due to emerging exceptions or special sit-
ations (Peleg et al., 2009). Hence, authorized users should be allowed
o situationally adapt single process instances during run-time to cope
ith unanticipated exceptions, e.g., by inserting, deleting, or moving
ctivities. Process adaptations aim to support such ad hoc deviations
rom a designed process model while ensuring PAIS robustness to end-
sers. Reichert and Dadam (1998) present an approach for the support
f dynamic structural changes of running process instances. Based upon
formal model called ADEPT, they define a complete and minimal
et of change operations called ADEPTflex, which support users in
odifying the structure of a running process model while maintaining
ts structural correctness and consistency. Weber et al. (2008) suggest
8 change patterns independent of concrete implementations and con-
titute solutions to typical changes. They enable structural changes of
rocess models at a high level of abstraction, e.g., by adding, deleting,
r moving activities and process fragments, respectively. Furthermore,
daptation patterns can be applied at both the process type and the
rocess instance level.

.4.2. Actions in application code
Some approaches focus on revising the application code, specifically

he business rules governing the functionality of individual activi-
ies, in order to enhance business processes. In the realm of software
ngineering, such modification initiatives fall under the category of
aintenance (Buckley et al., 2005). A widely accepted classification of
oftware maintenance identifies 12 types, including training, consul-
ive, evaluative, reformative, updative, groomative, preventive, perfor-
ance, adaptive, reductive, corrective, and enhancive (Chapin et al.,
001).
Among these, enhancive maintenance activities stand out for their

ocus on changing business rules to extend or restrict the software’s
unctionality and accessibility. These amendments can involve the addi-
ion, elimination, or modification of business rules that dictate the func-
ioning of specific activities within the application. For instance, Wer-
elinger et al. (2003) propose a framework that permits users to define
ultiple business rules based on predetermined parameters, thereby
nabling the adaptation of these rules in response to changing business
eeds.
Similarly, Charfi and Mezini (2004) suggest an approach that di-

ides a process into a core part and a business rule part. This divi-
ion modularizes the business rule segment, enabling it to exist and
volve independently. They achieved this by implementing the business
ules as aspects using the BPEL extension AO4BPEL, which can be
ynamically (un)deployed during the process interpretation stage.
In summary, various approaches have been proposed in the lit-

rature to define actions as changes in PAISs. In this work, we aim
o develop a pattern-based action engine that plans such actions by
nalyzing temporal patterns of operational constraints and resolving
onflicts among such actions. The definition of actions is outside the
cope of this paper.

. Background

As depicted in Fig. 1, this work considers operational constraints
s temporally dependent and interval-based data, called constraint in-
tances. By analyzing temporal relations of such constraint instances, we
roduce action plans that describe which actions should be executed
nd how they should be scheduled to avoid conflicts. In the following,
e formally introduce the constraint instances, temporal relations, and
ction plans.
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Fig. 2. Examples of constraint instances, 𝐶𝐼1 = {𝑐𝑖1 ,… , 𝑐𝑖4} ⊆ U𝑐𝑖.

.1. Constraint instances

An operational constraint in business processes represents an oper-
tional problem, e.g., the high frequency of ‘‘change price’’ in an O2C
rocess (cf. C1 depicted in Fig. 1(a)). Such constraints may occur in a
ime window. A time window describes the period between a start and
n end timestamp.

efinition 1 (Time Window). Let U𝑡𝑖𝑚𝑒 be the totally ordered set of
ll possible timestamps. U𝑡𝑤 = {(𝑡𝑠, 𝑡𝑒) ∈ U𝑡𝑖𝑚𝑒 × U𝑡𝑖𝑚𝑒 ∣ 𝑡𝑠 < 𝑡𝑒} is
the set of all possible time windows. For any 𝑡𝑤 = (𝑡𝑠, 𝑡𝑒) ∈ U𝑡𝑤,
𝜋𝑠𝑡(𝑡𝑤) = 𝑡𝑠 and 𝜋𝑒𝑡(𝑡𝑤) = 𝑡𝑒. For any two time windows 𝑡𝑤1, 𝑡𝑤2 ∈ U𝑡𝑤,
𝑤1 ∪ 𝑡𝑤2 = (𝑚𝑖𝑛({𝜋𝑠𝑡(𝑡𝑤1), 𝜋𝑠𝑡(𝑡𝑤2)}), 𝑚𝑎𝑥({𝜋𝑒𝑡(𝑡𝑤1), 𝜋𝑒𝑡(𝑡𝑤2)})).

For instance, 𝑡𝑤1 = (2023-01-01 00:00:00, 2023-01-08 00:00:00) is a time
indow where 𝜋𝑠𝑡(𝑡𝑤1) = 2023-01-01 00:00:00 and 𝜋𝑒𝑡(𝑡𝑤1) =
023-01-08 00:00:00. For 𝑡𝑤1 and 𝑡𝑤2 = (2023-01-08 00:00:00, 2023-01-15 00:00:00),
𝑤1 ∪ 𝑡𝑤2 = (2023-01-01 00:00:00, 2023-01-15 00:00:00).
A constraint instance refers to the presence of an operational con-

traint during a specific time window, e.g., the presence of operational
onstraint C1 in Fig. 1(a) from 2023-01-01 to 2023-01-08.

efinition 2 (Constraint Instance). Let U𝑐𝑛 be the universe of opera-
ional constraint names. U𝑐𝑖 = U𝑐𝑛 × U𝑡𝑤 is the universe of constraint
nstances. For 𝑐𝑖 = (𝑐𝑛, 𝑡𝑤) ∈ U𝑐𝑖, 𝜋𝑐𝑛(𝑐𝑖) = 𝑐𝑛 and 𝜋𝑡𝑤(𝑐𝑖) = 𝑡𝑤.

For instance, (𝐶1, 𝑡𝑤1) ∈ U𝑐𝑖 denotes a constraint instance repre-
enting the presence of operational constraint C1 during time window
𝑤1.
Fig. 2 shows a set of constraint instances, 𝐶𝐼1 = {𝑐𝑖1,… , 𝑐𝑖4} ⊆

U𝑐𝑖. For instance, 𝑐𝑖1 = (𝐶1, (𝑡1, 𝑡3)) denotes a constraint instance
representing the presence of operational constraint C1 from 𝑡1 to 𝑡3.

.2. Temporal relations

A temporal relation indicates a relation between two time windows,
.g., a time window overlaps with the other time window.

efinition 3 (Temporal Relations). 𝑅𝑒𝑙 ⊆ U𝑡𝑤 × U𝑡𝑤 is a temporal rela-
tion. We denote  to be the set of all possible temporal relations. Any
two time windows belong to exactly one relation, i.e., ∀(𝑡𝑤1 ,𝑡𝑤2)∈U𝑡𝑤×U𝑡𝑤
∃𝑅𝑒𝑙∈∀𝑅𝑒𝑙′∈⧵{𝑅𝑒𝑙} (𝑡𝑤1, 𝑡𝑤2) ∈ 𝑅𝑒𝑙 ∧ (𝑡𝑤1, 𝑡𝑤2) ∉ 𝑅𝑒𝑙′.

Allen (1983) suggests 13 temporal relations as shown in Fig. 3. For
instance, 𝑏𝑒𝑓𝑜𝑟𝑒 ∈  is a temporal relation describing that a time
window is before the other time window, i.e., 𝑏𝑒𝑓𝑜𝑟𝑒 = {(𝑡𝑤1, 𝑡𝑤2) ∈
U𝑡𝑤 × U𝑡𝑤 ∣ 𝜋𝑒𝑡(𝑡𝑤1) < 𝜋𝑠𝑡(𝑡𝑤2)}. Moreover, 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠 ∈  is a temporal
relation describing that a time window overlaps with the other time
window, i.e., 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠 = {(𝑡𝑤1, 𝑡𝑤2) ∈ U𝑡𝑤 × U𝑡𝑤 ∣ 𝜋𝑠𝑡(𝑡𝑤1) < 𝜋𝑠𝑡(𝑡𝑤2) <
𝜋𝑒𝑡(𝑡𝑤1) < 𝜋𝑒𝑡(𝑡𝑤2)}.

Any two constraint instances have exactly one temporal relation.
5

For example, 𝑐𝑖1 = (𝐶1, (𝑡1, 𝑡3)) is before 𝑐𝑖3 = (𝐶1, (𝑡4, 𝑡6)) as ((𝑡1, 𝑡3), o
Fig. 3. Allen’s temporal relations between two time windows.

Fig. 4. An example of action plans, 𝐴𝑃1.

(𝑡4, 𝑡6)) ∈ 𝑏𝑒𝑓𝑜𝑟𝑒. Moreover, 𝑐𝑖1 = (𝐶1, (𝑡1, 𝑡3)) overlaps with 𝑐𝑖2 =
(𝐶2, (𝑡2, 𝑡5)) as ((𝑡1, 𝑡3), (𝑡2, 𝑡5)) ∈ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠. We analyze such temporal
relations to produce action plans.

3.3. Action plans

An action plan describes the execution of actions (e.g., 𝐴1 is exe-
uted from 6. Feb.2023 to 8. Feb.2023 and 𝐴3 is executed from 8. Feb.2023

o 11. Feb.2023). We deliberately abstract from specific definitions of
ctions, denoting U𝑎𝑐𝑡𝑖𝑜𝑛 as the collection of actions introduced in
ection 2.4.

efinition 4 (Action Plan). Let U𝑎𝑐𝑡𝑖𝑜𝑛 be the universe of actions. 𝐴𝑃 ⊆
U𝑎𝑐𝑡𝑖𝑜𝑛×U𝑡𝑤 is an action plan. We denote U𝐴𝑃 to be the set of all possible
action plans.

For example, Fig. 4 shows an action plan, 𝐴𝑃1 = {(𝐴1, (𝑡11, 𝑡12)),
𝐴2, (𝑡11, 𝑡12)), (𝐴3, (𝑡8, 𝑡10))}, specifying that 𝐴3 should be executed
rom 𝑡8 to 𝑡10, while 𝐴1 and 𝐴2 should be performed from 𝑡10 to 𝑡12.
In the following, we explain how a pattern-based action engine pro-

uces such action plans by analyzing temporal relations inherent in
onstraint instances.

. Pattern-based action engine

This section introduces a pattern-based action engine. Fig. 5 pro-
ides an overview of the proposed approach, which is composed of
hree phases. First, domain experts design action graphs. These are
raphical notations that specify how to analyze temporal patterns of
perational constraints and subsequently generate appropriate actions.
ach action graph is constituted by temporal pattern trees and actions.
temporal pattern tree represents the specific temporal pattern of
perational constraints being addressed, while an action represents
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Fig. 5. Overview of the proposed pattern-based action engine.
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the corrective measure undertaken in response to that pattern. Subse-
quently, the pattern-based action engine generates action requirements
by analyzing constraint instances using the action graphs. An action re-
quirement describes requisite actions, along with their duration. Lastly,
the pattern-based action engine formulates action plans by scheduling
the requisite actions while taking into account the duration and action
onflicts.

.1. Designing action graphs

In this work, we use temporal pattern trees to represent temporal
elations among a variable number of operational constraints. Leaves
epresent operational constraints, and inner nodes represent temporal
elations between their subtrees.

efinition 5 (Temporal Pattern Tree Syntax). A temporal pattern tree
𝑡 = (𝑉 ,𝐸, 𝜆, 𝑟) consists of a totally ordered set of nodes 𝑉 , a set of
dges 𝐸 ⊆ 𝑉 ×𝑉 , a labeling function 𝜆 ∈ 𝑉 → U𝑐𝑛 ∪, and a root node
∈ 𝑉 .

• ({𝑣}, ∅, 𝜆, 𝑣) with 𝜆(𝑣) ∈ U𝑐𝑛 is a temporal pattern tree.
• Given two different temporal trees 𝑝𝑡1 = (𝑉1, 𝐸1, 𝜆3, 𝑟1) and 𝑝𝑡2 =
(𝑉2, 𝐸2, 𝜆2, 𝑟2) with 𝑟 ∉ 𝑉1∪𝑉2, 𝑝𝑡 = (𝑉 ,𝐸, 𝜆, 𝑟) is a temporal pattern
tree such that

– 𝑉 = 𝑉1 ∪ 𝑉2 ∪ {𝑟}
– 𝐸 = 𝐸1 ∪ 𝐸2 ∪ {(𝑟, 𝑟1), (𝑟, 𝑟2)}
– 𝜆(𝑣) = 𝜆𝑖(𝑣) for any 𝑖 ∈ {1, 2} and 𝑣 ∈ 𝑉𝑖
– 𝜆(𝑟) ∈ 

U𝑝𝑡 denotes the set of all possible temporal pattern trees.

Fig. 6 shows a temporal pattern tree 𝑝𝑡0. The tree describes that
C1 ‘‘a high frequency of change price’’ happens during C3 ‘‘a high avg.
throughput time of orders’’. This pattern of C1 and C3 overlaps with
C2 ‘‘a high avg. sojourn time of change price’’.

Note that every temporal relation (inner node) has exactly two
children. Next to the graphical representation, any temporal pattern
tree can be textually represented because of its totally ordered node
set, e.g., 𝑝𝑡0 =

∧ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠(𝑑𝑢𝑟𝑖𝑛𝑔(𝐶1, 𝐶3), 𝐶2).
For a tree 𝑝𝑡 = (𝑉 ,𝐸, 𝜆, 𝑟), 𝐿(𝑝𝑡) = {𝑣 ∈ 𝑉 ∣ ∄𝑣′∈𝑉 (𝑣, 𝑣′) ∈ 𝐸} denotes

ts leaf nodes. Assuming that for each node, the left child appears first
n the order, we define the left child of a node 𝑣 ∈ 𝑉 as:

𝑐(𝑝𝑡, 𝑣) =

{

𝑤 if (𝑣,𝑤) ∈ 𝐸 ∧ ∄𝑢∈𝑉 ,𝑢<𝑤 (𝑣, 𝑢) ∈ 𝐸
∅ otherwise.

Then, assuming that 𝐸+ denotes the transitive closure 𝐸, the leaf
odes of the left child of a vertex 𝑣 ∈ 𝑉 are defined as follows:

𝐿𝐿(𝑝𝑡, 𝑣) =

{

{𝑤 ∈ 𝑉 |(𝑙𝑐(𝑝𝑡, 𝑣), 𝑤) ∈ 𝐸+ ∧ ∄𝑢∈𝑉 (𝑤, 𝑢) ∈ 𝐸} if 𝑙𝑐(𝑣) ≠ ∅

∅ otherwise.

For instance, 𝑙𝑐(𝑝𝑡0, 𝑛0) = 𝑛1.1 and 𝐿𝐿(𝑝𝑡0, 𝑛0) = {𝑛2.1, 𝑛2.2}. We define
𝑅𝐿(𝑝𝑡, 𝑣) to be the leaf nodes of the right child of 𝑣 ∈ 𝑉 in the same
manner.

We define the semantics of temporal pattern trees in relation to a
set of constraint instances with the notion of occurrences.
6

Fig. 6. An example temporal pattern tree 𝑝𝑡0 =
({𝑛0 , 𝑛1.1 , 𝑛1.2 , 𝑛2.1 , 𝑛2.2}, {(𝑛0 , 𝑛1.1),… , (𝑛1.1 , 𝑛2.2)}, 𝜆0 , 𝑛0) with 𝜆0(𝑛0) =
𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠,… , 𝜆0(𝑛2.2) = 𝐶3, where C1 denotes a high frequency of ‘‘change price’’, C2
enotes a high avg. sojourn time of ‘‘price change’’, and C3 denotes a high avg.
hroughput time of orders (cf. Fig. 1(a)).

Definition 6 (Temporal Pattern Tree Semantics). Let 𝑝𝑡 = (𝑉 ,𝐸, 𝜆, 𝑟) ∈
U𝑝𝑡 be a temporal pattern tree. Let 𝐶𝐼 ⊆ U𝑐𝑖 be a set of constraint
instances. The function 𝑜𝑐𝑐𝑢𝑟𝑠(𝑝𝑡, 𝐶𝐼) = 𝑡𝑟𝑢𝑒 if there is an injective
mapping 𝜇 ∈ 𝐿(𝑝𝑡) → 𝐶𝐼 such that

• ∀𝑣∈𝐿(𝑝𝑡) 𝜆(𝑣) = 𝜋𝑐𝑛(𝜇(𝑣)) and
• ∀𝑣∈𝑉 ⧵𝐿(𝑝𝑡)

(

⋃

𝑣′∈𝐿𝐿(𝑝𝑡,𝑣) 𝜋𝑡𝑤(𝜇(𝑣′)),
⋃

𝑣′∈𝑅𝐿(𝑝𝑡,𝑣) 𝜋𝑡𝑤(𝜇(𝑣′))
)

∈ 𝜆(𝑣).

therwise, 𝑜𝑐𝑐𝑢𝑟𝑠(𝑝𝑡, 𝐶𝐼) = 𝑓𝑎𝑙𝑠𝑒.

Fig. 7 shows an example of an injective mapping 𝜇1 that demon-
trates that 𝑜𝑐𝑐𝑢𝑟𝑠(𝑝𝑡0, 𝐶𝐼1) = 𝑡𝑟𝑢𝑒. Formally, 𝜇1 = {(𝑛2,1, 𝑐𝑖3), (𝑛2.2, 𝑐𝑖4),
𝑛1.2, 𝑐𝑖2)} such that

• 𝜆(𝑛2.1) = 𝜋𝑐𝑛(𝑐𝑖3) = 𝐶1, 𝜆(𝑛2.2) = 𝜋𝑐𝑛(𝑐𝑖4) = 𝐶3, 𝜆(𝑛1.2) = 𝜋𝑐𝑛(𝑐𝑖2) =
𝐶2,

• (𝜋𝑡𝑤(𝑐𝑖3), 𝜋𝑡𝑤(𝑐𝑖4)) ∈ 𝑑𝑢𝑟𝑖𝑛𝑔, and
• (𝜋𝑡𝑤(𝑐𝑖3) ∪ 𝜋𝑡𝑤(𝑐𝑖4), 𝜋𝑡𝑤(𝑐𝑖2)) ∈ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠.

An action graph is a graphical notation to formally represent (1)
ow to analyze constraint instances using temporal pattern trees and
2) how to trigger actions. It consists of two types of nodes, i.e., tem-
oral pattern trees and actions, and edges connecting the nodes (cf.
ig. 8). Each edge represents that the associated pattern is addressed by
he corresponding action and is labeled with the required time duration
or the remedial action.

efinition 7 (Action Graph). An action graph is a graph 𝑎𝑔 =
𝑃𝑇 ,𝐴, 𝑃𝐴, 𝑙) where

• 𝑃𝑇 ⊆ U𝑝𝑡 is a set of temporal pattern trees,
• 𝐴 ⊆ U𝑎𝑐𝑡𝑖𝑜𝑛 is a set of actions,
• 𝑃𝐴 ⊆ 𝑃𝑇 × 𝐴 is a set of pattern-to-action edges, and
• 𝑙 ∈ 𝑃𝐴 → R maps pattern-to-action edges to time duration.
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Fig. 7. (a) Temporal pattern tree 𝑝𝑡0 (cf. Fig. 6), (b) Set of constraint instances 𝐶𝐼1 (cf. Fig. 2), and (c) An injective mapping demonstrating that the temporal pattern tree occurs
n the set of constraint instances.
Fig. 8. Action graph 𝑎𝑔1 consisting of six temporal patterns of operational constraints, i.e., 𝑝𝑡0 ,… , 𝑝𝑡5 ∈ U𝑝𝑡, and three actions, i.e., 𝑎1 , 𝑎2 , 𝑎3 ∈ U𝑎𝑐𝑡𝑖𝑜𝑛.
U𝑎𝑔 denotes the set of all possible action graphs.

Fig. 8 shows an action graph 𝑎𝑔1. It consists of six problems patterns,
i.e., 𝑝𝑡0,… , 𝑝𝑡5 ∈ U𝑝𝑡, and three actions, i.e., 𝑎1, 𝑎2, 𝑎3 ∈ U𝑎𝑐𝑡𝑖𝑜𝑛. Each
action reflects a different conceptual action type that we introduce in
Section 2.4.

Action 𝑎1, i.e., batch processing price changes, for one day, ad-
dresses 𝑝𝑡1, 𝑝𝑡2, 𝑝𝑡3. This action aligns with the concept of process re-
design, as it involves modifying the process to accumulate price changes
and apply them in batches rather than making individual changes.
Next, patterns 𝑝𝑡4 and 𝑝𝑡5 are tackled by 𝑎2, i.e., adding more sales
staff to support the price changes for two time units, as well as 𝑎1
for two time units. The action 𝑎2 aligns with the concept of enhancive
maintenance, which involves changing the application code to extend
7

functionality, such as managing and assigning tasks to an increased
number of sales staff. Finally, 𝑝𝑡0 is addressed with 𝑎3, i.e., disabling
‘‘change’’ price, for three time units. This action aligns with the con-
cept of process configuration, as it involves disabling or restricting the
accessibility of an activity.

Formally, 𝑎𝑔1 = (𝑃𝑇1, 𝐴1, 𝑃𝐴1, 𝑙1) where 𝑃𝑇1 = {𝑝𝑡0,… , 𝑝𝑡5}, 𝐴1 =
{𝑎1, 𝑎2, 𝑎3}, 𝑃𝐴1 = {(𝑝𝑡1, 𝑎1),… , (𝑝𝑡0, 𝑎3)}, 𝑙1(𝑝𝑡1, 𝑎1) = 1, 𝑙1(𝑝𝑡0, 𝑎3) = 3,
etc.

4.2. Generating actions

Based on action graphs, we analyze constraint instances to gener-
ate action requirements. An action requirement describes actions with
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required durations. For example, 𝑎1 is required for two time units, 𝑎2 is
required for two time units, and 𝑎3 is required for three time units. An
action requirement refers to unique actions, i.e., it does not describe
the same action with different duration (e.g., 𝑎1 required for two time
units and 𝑎1 required for three time units).

Definition 8 (Action Requirement). An action requirement 𝐴𝑅 ⊆ U𝑎𝑐𝑡𝑖𝑜𝑛×
R is a set of action and duration pairs such that, for any (𝑎, 𝑟), (𝑎′, 𝑟′) ∈
𝐴𝑅, 𝑎 = 𝑎′ ⟹ (𝑎, 𝑟) = (𝑎′, 𝑟′). U𝐴𝑅 denotes the set of all possible
ction requirements.

For instance, 𝐴𝑅1 = {(𝑎1, 2), (𝑎2, 2), (𝑎3, 3)} ∈ U𝐴𝑅 refers to an action
requirement that describes the execution of action 𝑎1 for two time units,
the execution of action 𝑎2 for two time units, and the execution of
action 𝑎3 for two time units. Note that, for the sake of brevity, we define
durations as real numbers.

Given a set of constraint instances and an action graph, an action
generator returns an action requirement. More in detail, it generates
actions if any of their connected temporal patterns occur in the set of
constraint instances, e.g., 𝑎1 is generated if any of 𝑝𝑡1,… , 𝑝𝑡5 occur in a
set of constraint instances. In this work, we associate the duration of a
generated action with the maximum duration among the ones specified
by occurring temporal patterns, e.g., 𝑎1’s duration is 2 if both 𝑝𝑡1 and
𝑝𝑡5 occur.

Definition 9 (Action Generator). An action generator 𝑔𝑒𝑛 ∈ (U𝑐𝑖) ×
U𝑎𝑔 → U𝐴𝑅 maps a set of constraint instances and an action graph to
an action requirement. For any 𝐶𝐼 ⊆ U𝑐𝑖 and 𝑎𝑔 = (𝑃𝑇 ,𝐴, 𝑃𝐴, 𝑙) ∈ U𝑎𝑔 ,
𝑔𝑒𝑛(𝐶𝐼, 𝑎𝑔) = {(𝑎, 𝑑𝑢𝑟) ∈ U𝑎𝑐𝑡𝑖𝑜𝑛 × R ∣ (∃(𝑝𝑡,𝑎)∈𝑃𝐴 𝑜𝑐𝑐𝑢𝑟𝑠(𝑝𝑡, 𝐶𝐼) = 𝑡𝑟𝑢𝑒 ∧
𝑑𝑢𝑟 = 𝑙(𝑝𝑡, 𝑎)) ∧ (∄(𝑝𝑡′ ,𝑎)∈𝑃𝐴 𝑜𝑐𝑐𝑢𝑟𝑠(𝑝𝑡′, 𝐶𝐼) = 𝑡𝑟𝑢𝑒 ∧ 𝑑𝑢𝑟 < 𝑙(𝑝𝑡′, 𝑎))}.

Given 𝐶𝐼1 ⊆ U𝑐𝑖 described in Fig. 7 and 𝑎𝑔1 depicted in Fig. 8,
𝑒𝑛(𝐶𝐼1, 𝑎𝑔1) = 𝐴𝑅1 = {(𝑎1, 2), (𝑎2, 2), (𝑎3, 3)}. First, (𝑎1, 2) is generated
ince 𝑝𝑡1, 𝑝𝑡2, 𝑝𝑡3, 𝑝𝑡4, and 𝑝𝑡5 occur in 𝐶𝐼1, and the maximum duration
pecified in the action graph is 2. Second, (𝑎2, 2) is generated since 𝑝𝑡4,
nd 𝑝𝑡5 occur in 𝐶𝐼1, and the maximum duration specified in the action
raph is 2. Finally, (𝑎3, 3) is generated since 𝑜𝑐𝑐𝑢𝑟𝑠(𝑝𝑡0, 𝐶𝐼1) = 𝑡𝑟𝑢𝑒, and
he maximum duration specified in the action graph is 3.

.3. Planning actions

Based on action requirements, we plan the execution of actions in
he action requirement, e.g., 𝑎1 is executed from 6. Feb.2023 to 8. Feb.2023,
nd 𝑎3 is executed from 8. Feb.2023 to 11. Feb.2023, ensuring the resolution
f any conflicts between actions. A conflict between actions can be
nterpreted in multiple ways, and for this work, we categorize them
s follows:

• Temporal Conflicts: These conflicts stem from the timing and
scheduling of actions. They can be further classified into:

– Concurrent Execution Conflicts: These occur when two or
more actions are planned to happen simultaneously. If ac-
tion a1 involves shutting down a machine for maintenance
and action a2 involves running a diagnostic test on the same
machine, scheduling both actions at the same time would
create a conflict.

– Sequential Execution Conflicts: These occur when the order
of action execution is essential, such as when one action
must conclude before another begins. If action a3 requires
the results of action a1 for its execution, then a1 must
complete before a3 starts.

• Effect-based Conflicts: These conflicts emerge based on the after-
maths of the actions. They can be further segmented into:

– Incompatibility Conflicts: These conflicts arise when the
8

execution of one action nullifies the effect of another. If r
action a4 is meant to increase system security but action
a5 inadvertently creates a security vulnerability, the two
actions are in conflict.

– Counterproductivity Conflicts: These conflicts appear when
the outcome of an action interferes with or obstructs the
overall objective. If the objective is to reduce energy con-
sumption and action a6 reduces energy use but action a7
increases it, this creates a counterproductivity conflict.

• Dependency-based Conflicts: These conflicts emerge due to the
dependency relationships between actions. They can be further
broken down into:

– Interdependency Conflicts: These conflicts arise when cer-
tain actions must be carried out together for a successful
operation. If action a8 sets a system configuration that
action a9 relies on, failing to execute both actions together
would result in a conflict.

In this work, our primary focus lies in resolving temporal conflicts
mong actions. To this end, an action conflict model is designed to ex-
ress the temporal conflict between actions and precedence constraints.
or instance, an action conflict may describe that 𝑎3 has a conflict with
1, i.e., disabling change price cannot be executed simultaneously with
lerting sales staff responsible for change price, and the conflict between
3 and 𝑎1 is resolved by executing 𝑎3 before 𝑎1.

Definition 10 (Action Conflict). An action conflict 𝐴𝑃 = (𝐴,𝐶) is a
irected acyclic graph where 𝐴 ⊆ U𝑎𝑐𝑡𝑖𝑜𝑛 and 𝐶 ⊆ 𝐴 × 𝐴 such that
𝑎, 𝑎) ∉ 𝐶+ for all 𝑎 ∈ 𝐴, where 𝐶+ denotes the transitive closure of
. U𝑎𝑐 denotes the set of all possible action conflicts.

Fig. 9(b) shows an example action conflict, 𝑎𝑐1 = (𝐴1, 𝐶1) with
1 = {𝑎1, 𝑎2, 𝑎3} and 𝐶1 = {(𝑎3, 𝑎1), (𝑎3, 𝑎1)}. Action 𝑎3 has a conflict
ith action 𝑎1, and the conflict is resolved by executing 𝑎3 before 𝑎1.
oreover, action 𝑎3 has a conflict with action 𝑎2, and the conflict is
esolved by executing 𝑎3 before 𝑎2.
Given an action requirement and an action conflict, an action

lanner produces an action plan. For each action specified in the
ction requirement, the action planner produces an action instance
hat describes the execution of the corresponding action with a start
imestamp and an end timestamp. While doing so, the action planner
nsures that no conflicts exist between the action instances using the
ction conflict, i.e., no conflicting actions are simultaneously executed.

efinition 11 (Action Planner). An action planner 𝑝𝑙𝑎𝑛 ∈ U𝐴𝑅 × U𝑎𝑐 →

𝐴𝑃 maps an action requirement and an action conflict to an action
lan. For any 𝐴𝑅 ∈ U𝐴𝑅 and (𝐴,𝐶) ∈ U𝑎𝑐 ,

• {(𝑎, 𝜋𝑒𝑡(𝑡𝑤) − 𝜋𝑠𝑡(𝑡𝑤)) ∣ (𝑎, 𝑡𝑤) ∈ 𝑝𝑙𝑎𝑛(𝐴𝑅, 𝑎𝑐)} = 𝐴𝑅 and
• ∀(𝑎,𝑎′)∈𝐶∀(𝑎,𝑡𝑤),(𝑎′ ,𝑡𝑤′)∈𝑝𝑙𝑎𝑛(𝐴𝑅,𝑎𝑐) 𝜋𝑒𝑡(𝑡𝑤) ≤ 𝜋𝑠𝑡(𝑡𝑤′).

Fig. 9 shows three action planners that produce different action
lans, given action requirement 𝐴𝑅1 and action conflict 𝑎𝑐1. For three
ctions specified in 𝐴𝑅1, action planner 𝑝𝑙𝑎𝑛1 produces an action plan
ith three action instances, i.e., 𝑝𝑙𝑎𝑛1(𝐴𝑅1, 𝑎𝑐1) = {(𝑎1, (4, 5)), (𝑎2, (6, 7)),
𝑎3, (1, 3))}. Action instance (𝑎1, (3, 5)) is produced for (𝑎1, 2) ∈ 𝐴𝑅1,
hile (𝑎2, (5, 7)) and (𝑎3, (0, 3)) are produced for (𝑎2, 2) and (𝑎3, 3), re-
pectively. Actions 𝑎1 and 𝑎2 are planned after 𝑎3 to resolve the conflict
pecified in 𝑎𝑐1.
In this work, we implement an action planner that minimizes

he makespan, i.e., the total time taken to finish all action instances
e.g., the leftmost action plan in Fig. 9(c) has the makespan of 7).
y minimizing the makespan, we ensure that actions are executed in
he shortest possible time, which in turn enables a faster response to
perational issues. However, makespan minimization is not the only
ossible objective for an action planner. Depending on the specific

equirements and constraints of the process and problem scenario,
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Fig. 9. Examples of action planners: (a) An action requirement (𝐴𝑅1), (b) An action conflict (𝑎𝑐1), and (c) Different action plans computed from the action requirements and
ction conflict.
O

ther potential objectives could include minimizing the total cost of
ctions, maximizing the quality or effectiveness of actions, etc. For
nstance, in scenarios where action costs are a concern, an action
lanner might seek to minimize the total cost of actions. On the other
and, in cases where the quality of the actions is paramount, the
lanner might aim to maximize the overall effectiveness of the actions,
otentially at the expense of longer makespan or higher costs.
We formulate the problem as a parallel machine scheduling prob-

em, i.e., scheduling 𝑛 jobs (i.e., 𝑛 actions in the given action require-
ent) on 𝑚 parallel machines (i.e., 𝑚 entities which execute actions)
nder precedent constraints (i.e., the action conflict), while minimizing
he makespan (denoted as 𝑃𝑚|𝑝𝑟𝑒𝑐|𝐶𝑚𝑎𝑥) (Pinedo, 2012).

𝑃𝑚|𝑝𝑟𝑒𝑐|𝐶𝑚𝑎𝑥, is an NP-hard problem (Cheng and Sin, 1990). How-
ver, a polynomial time algorithm to solve the problem exists if there
re an unlimited number of machines (i.e., 𝑚 ≥ 𝑛) (Pinedo, 2012). We
mplement an action planner under the assumption that there are an
nlimited number of entities that can execute the actions. Algorithm 1
escribes the action planner algorithm. Given an action requirement
nd an action conflict, we schedule the actions in the action require-
ent that have no conflicts one at a time, starting at time 0. Whenever
n action has been completed, we schedule the actions of which all
redecessors have been completed.
The proposed algorithm produces the third action plan described in

ig. 9. The action plan has the minimum makespan of 5 time units,
iven the action requirement and action conflict.

. Evaluation

This section evaluates the action engine proposed in Section 4.
irst, we evaluate the feasibility of the proposed action engine by
emonstrating a use case using the data of a real-life loan application
9

Algorithm 1 Action planner algorithm
Input: An action requirement 𝐴𝑅 ∈ U𝐴𝑅 and an action conflict

(𝐴,𝐶) ∈ U𝑎𝑐
utput: An action plan 𝐴𝑃 ∈ U𝐴𝑃
1: 𝐴𝑃 ← ∅
2: 𝑆 ← ∅ ⊳ A set of pairs of a scheduled action and its completion
time

3: 𝑡 ← 0
4: while 𝐴𝑅 ≠ ∅ do
5: for (𝑎, 𝑟) ∈ 𝐴𝑅 do
6: if {𝑎′ ∣ (𝑎′, 𝑎) ∈ 𝐶} ⊆ 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒(𝑆, 𝑡) then ⊳ 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 is a
function to return the set of completed actions at 𝑡

7: 𝑆 ← 𝑆 ∪ (𝑎, 𝑡 + 𝑟)
8: 𝐴𝑃 ← 𝐴𝑃 ∪ (𝑎, (𝑡, 𝑡 + 𝑟))
9: 𝐴𝑅 ← 𝐴𝑅 ⧵ {(𝑎, 𝑟)}
10: end if
11: end for
12: 𝑡 ← 𝑡 + 1
13: end while
14: return 𝐴𝑃

process. Next, we conduct experiments to evaluate the scalability and
performance of the proposed action engine.

5.1. Use case: Loan application process

We demonstrate a use case using the data of a real-life loan applica-
tion process from a Dutch financial institute (van Dongen, 2017). The
execution of the loan application process involves an application and a
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Fig. 10. A process model of the loan application process using object-centric Petri net
as a formalism.

variable number of offers. Fig. 10 shows a process model as an object-
centric Petri net (van der Aalst and Berti, 2020). First, a customer
creates an application by visiting the bank or using an online system.
In the former case, submit activity is skipped. After the completion and
acceptance of the application, the bank offers loans to the customer by
sending the offer to the customer and making a call. An offer is either
accepted or canceled.

In this use case, we focus on the offers canceled due to various
reasons. In order to introduce operational constraints in the context
of canceled applications, we explain a process execution with a can-
celed application as depicted in Fig. 11. The process execution starts
with Application1. The application has its own lifecycle that consists
of multiple activities such as create application, submit, call incomplete
files, etc. The process execution involves two offers: Offer1 and Offer2.
The lifecycle of each offer includes activities such as create offer, send
ffer, call applicants, etc. The process execution finishes by canceling
pplication1 with Offer1 and Offer2.
10
During the process, we monitor the presence of the following op-
erational constraints focusing on cancel application (CA) activity in the
process:

1. High ratio of CA’s executions (CE) which represents the high ratio
of applications that are canceled.

2. High ratio of CA’s executions with multiple offers (MO) which
represents the high ratio of CA events that involve multiple
offers.

3. High avg. flow time of CA (FT ) which represents the high avg.
flow time of CA events; In Fig. 11, flow time of CA is the time
difference between the completion of CA and the completion of
Application1’s lifecycle before CA.

4. High avg. sojourn time of CA (SoT ) represents the high avg. so-
journ time of CA events; In Fig. 11, sojourn time of CA is the time
difference between the completion of CA and the completion of
Offer2’s lifecycle before CA.

5. High avg. synchronization time of CA (SyT ) represents the high
avg. synchronization time of CA events; In Fig. 11, synchroniza-
tion time of CA is the time difference between the completion of
Offer2’s lifecycle before CA and the completion of Application1’s
lifecycle before CA.

6. High avg. pooling time of CA w.r.t. offers (PT ) represents the high
avg. pooling time of cancel application events w.r.t. offers; In
Fig. 11, pooling time of CA w.r.t. offers is the time difference
between the completion of Offer2’s lifecycle before CA and the
completion of Offer1’s lifecycle before CA.

7. High avg. readiness time of CA w.r.t. applications (RT ) represents
the high avg. readiness time of cancel application events w.r.t.
applications; In Fig. 11, readiness time of CA w.r.t. appliications is
the time difference between the completion of Offer2’s lifecycle
before CA and the completion of Application1’s lifecycle before
CA.

5.1.1. Designing action graphs
First, we define relevant temporal patterns of the operational con-

straints in the loan application process. Typically, these temporal pat-
terns are derived from the expertise of domain experts. The application
of frequent temporal pattern mining approaches aids these experts in
specifying such patterns, as well as facilitates the validation of their
occurrences in the historical process executions.

To discover these temporal patterns, we utilize the weekly moni-
toring results, spanning from January 2016 to September 2016. For
this, we employ the frequent pattern mining approach implemented in
a process mining tool (Schuster et al., 2023). Each weekly monitoring
result comprises a week’s constraint instances, for example, the week
starting from 01.01.2016 00:00:00 and ending at 01.07.2016 23:59:59.

From the 91 discovered frequent temporal patterns, we select those
we aim to address. Our selection criteria are based on: (a) relevance
to the business process, and (b) simplicity and interpretability of the
patterns. In terms of (a), we exclude patterns such as 𝑏𝑒𝑓𝑜𝑟𝑒(𝐹𝑇 , 𝐶𝐸),
which refers to a high average flow time of CA before a high ratio of
CA’s executions, as they do not significantly contribute to understand-
ing the problem areas of the loan application process.

In terms of (b), we disregard overly complex patterns such
as 𝑏𝑒𝑓𝑜𝑟𝑒(𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠(𝐶𝐸, 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠(𝑀𝑂,𝐹𝑇 )), 𝑏𝑒𝑓𝑜𝑟𝑒(𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠(𝑆𝑜𝑇 , 𝑆𝑦𝑇 ),
𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠(𝑆𝑜𝑇 , 𝑆𝑦𝑇 ))), despite their potential interest. These intricate
conditions are too complex to elicit meaningful actions for tackling the
problem.

However, it is important to note that these temporal patterns should
ideally be confirmed by domain experts for maximum utility. Given our
reliance on publicly available data and the unavailability of access to
such experts in this evaluation, we have selected the most plausible
temporal patterns based on the aforementioned criteria.

Fig. 12 shows the selected six frequent temporal patterns: 𝑝𝑡𝑙𝑜𝑎𝑛1 ,… ,
𝑙𝑜𝑎𝑛
𝑝𝑡6 .
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Fig. 11. A process execution of the loan application process.
f
1
t
(
p
1
a
n

p
a
a
w
t

• 𝑝𝑡𝑙𝑜𝑎𝑛1 portrays a situation where numerous applications are can-
celed (CE) amid a high average flow time for cancellation (FT ).
This pattern indicates the demands for cancellation are increas-
ing, while the cancellation process is delayed, which can lead to
customer dissatisfaction.

• 𝑝𝑡𝑙𝑜𝑎𝑛2 illustrates a scenario where multiple offers are presented
(MO) in many canceled applications (CE), concurrent with a high
average flow time for the cancellation (FT ). This could mean
unnecessary work is being done for applications destined for
cancellation.

• 𝑝𝑡𝑙𝑜𝑎𝑛3 signifies a situation where a high synchronization time of CA
(SyT ) overlaps with a high sojourn time (SoT ). This could indicate
a bottleneck in the offering system, which eventually causes a
bottleneck in the application management system.

• 𝑝𝑡𝑙𝑜𝑎𝑛4 represents a repeating occurrence of a high synchroniza-
tion time (SoT ) overlapping with a high sojourn time (SyT ).
The repetition could point to a systemic issue in the process
synchronization mechanism, leading to unnecessary delays.

• 𝑝𝑡𝑙𝑜𝑎𝑛5 presents a situation where the synchronization of applica-
tion cancellations is delayed (SyT ) due to a high pooling time
concerning offers (PT ). This pattern may imply that cancellations
are being processed too slowly due to resources being tied up in
offer pooling.

• 𝑝𝑡𝑙𝑜𝑎𝑛6 denotes a scenario where the synchronization of applica-
tion cancellations (SyT ) is hampered by a high readiness time
regarding applications (RT ). This pattern suggests that the readi-
ness of applications is causing a slowdown in the cancellation
synchronization process.

Next, we derive several actions to address the temporal patterns
of operational constraints, i.e., 𝑎𝑙𝑜𝑎𝑛1 ,… , 𝑎𝑙𝑜𝑎𝑛7 ∈ U𝑎𝑐𝑡𝑖𝑜𝑛. In order to
determine the most appropriate actions, we consider the following
factors: the selected temporal patterns and their business implications
and the potential effectiveness and feasibility of the action within the
loan application process. The elicited actions are as follows:

• 𝑎𝑙𝑜𝑎𝑛1 is to send a warning message to the staff member responsible
for the cancel application task,

• 𝑎𝑙𝑜𝑎𝑛2 is to alter the business rule associated with the create offer
activity, so that the new rule encourages the acceptance of addi-
tional offers by applicants, e.g., by reducing the interest on loans
for additional offers,
11
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• 𝑎𝑙𝑜𝑎𝑛3 is to modify the business rule associated with the call appli-
cants activity to discourage repeated calls to applicants,

• 𝑎𝑙𝑜𝑎𝑛4 is to revise the business rule associated with the cancel
application activity to allow for additional resources to carry out
the cancellation of applications,

• 𝑎𝑙𝑜𝑎𝑛5 is to adjust the business rule associated with the cancel
application activity to prevent the cancellation of applications
with a single offer,

• 𝑎𝑙𝑜𝑎𝑛6 is to send reminders to applicants about their pending offers,
thereby reducing the likelihood of cancellations, and

• 𝑎𝑙𝑜𝑎𝑛7 is to alert loan application managers.

Finally, we design an action graph using the temporal pattern trees
and the actions. Fig. 13 shows the action graph.

5.1.2. Generating and planning actions
Using the action graphs, we apply the action engine to the loan

application process for 12 weeks from October 2016 to December 2016.
In the first week, we analyze the constraint instances from 30.Sep.2016
to 06.Oct.2016 and produce action instances starting from 07.Oct.2016,
and, in the second week, we analyze the constraint instances from
07.Oct.2016 to 13.Oct.2016 and produce action instances starting from
14.Oct.2016, etc. We use the action conflict depicted in Fig. 14 to
resolve conflicts between actions.

Fig. 15 shows the action plans computed by the action engine.
For instance, action plan 2 in Fig. 15 shows the action plan starting
rom 14.Oct.2016 and ending at 18.Oct.2016. From 07.Oct.2016 to
3.Oct.2016, 𝑝𝑡𝑙𝑜𝑎𝑛1 , 𝑝𝑡𝑙𝑜𝑎𝑛3 , 𝑝𝑡𝑙𝑜𝑎𝑛4 , and 𝑝𝑡𝑙𝑜𝑎𝑛6 occur, and thus, the ac-
ion generator generates an action requirement with (𝑎𝑙𝑜𝑎𝑛1 , 4), (𝑎𝑙𝑜𝑎𝑛3 , 2),
𝑎𝑙𝑜𝑎𝑛4 , 2), (𝑎𝑙𝑜𝑎𝑛6 , 3), and (𝑎𝑙𝑜𝑎𝑛7 , 2). Action 𝑎𝑙𝑜𝑎𝑛1 , 𝑎𝑙𝑜𝑎𝑛2 , 𝑎𝑙𝑜𝑎𝑛5 , and 𝑎𝑙𝑜𝑎𝑛6 are
lanned on 14.Oct.2016 and completed on 18.Oct.2016, 16.Oct.2016,
7.Oct.2016, and 15.Oct.2016, respectively. Action 𝑎𝑙𝑜𝑎𝑛4 is planned
fter 𝑎𝑙𝑜𝑎𝑛3 is completed since 𝑎𝑙𝑜𝑎𝑛3 is conflicting with 𝑎𝑙𝑜𝑎𝑛4 , and 𝑎𝑙𝑜𝑎𝑛3
eeds to be executed before 𝑎𝑙𝑜𝑎𝑛4 .
Each action plan involves a different number of actions since the

resence of temporal patterns varies in different periods. For instance,
ction plan 9, the action plan starting from 02.Dec.2016, comprises
ll the actions since all the selected temporal patterns occur in the
eek starting from 25.Nov.2016 to 01.Dec.2016, which demonstrates
he severity of problems in the week. In contrast, action plan 10, the

𝑙𝑜𝑎𝑛
ction plan starting from 09.Dec.2016, includes two actions, i.e., 𝑎6
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Fig. 12. Temporal pattern trees defined over operational constraints including CE, MO, FT, SoT, SyT, PT, and RT.
Fig. 13. An action graph that describes the handling of temporal patterns 𝑝𝑡𝑙𝑜𝑎𝑛1 ,… , 𝑝𝑡𝑙𝑜𝑎𝑛6 ∈ U𝑝𝑡 with actions 𝑎𝑙𝑜𝑎𝑛1 ,… , 𝑎𝑙𝑜𝑎𝑛7 ∈ U𝑎𝑐𝑡𝑖𝑜𝑛.
Fig. 14. A conflict graph used to resolve conflicts between actions in the loan
pplication process.
12
and 𝑎𝑙𝑜𝑎𝑛7 , since only one temporal pattern, i.e., 𝑝𝑡6, is present in the
week starting from 02.Dec.2016 to 08.Dec.2016.

We measure several performance metrics for the generated action
plans, including makespan, Total Waiting time (TW), and Total Flow
time (TF). The waiting time of actions indicates the time taken to start
the action, e.g., the waiting time of 𝑎𝑙𝑜𝑎𝑛4 in action plan 2 is 2 days,
whereas the flow time of actions denotes the time taken to complete
the action, e.g., the flow time of 𝑎𝑙𝑜𝑎𝑛4 in action plan 2 is 4 days. For
instance, the makespan of action plan 2 is 4, while the TW and TF are
2 and 14, respectively.

Different action plans show varying total waiting times. For in-
stance, action plan 9 has a total waiting time of 11, whereas action



Computers in Industry 153 (2023) 104020G. Park et al.

m
o
a

5

g
p
n
c
o
a
r

Fig. 15. Action plans computed by the action engine for 12 weeks from October 2016 to December 2016. M, TW, and TF indicate makespan, Total Waiting time, and Total Flow
time, respectively.
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plan 10 shows no waiting time. Depending on the type of actions, the
waiting time could be essential, e.g., the earlier the action is executed,
the higher its effect is. The waiting time for an action depends on the
existence of its conflicting actions that need to precede the action. For
instance, 𝑎𝑙𝑜𝑎𝑛6 often has waiting times, i.e., 8 out of 9 weeks, since it is
ostly planned together with 𝑎𝑙𝑜𝑎𝑛5 that is conflicting, precedent action
f 𝑎𝑙𝑜𝑎𝑛6 . Moreover, 𝑎𝑙𝑜𝑎𝑛4 always shows waiting times since its preceding
ction, 𝑎𝑙𝑜𝑎𝑛3 , is always planned together, i.e., 3 out of 3 weeks.

.2. Experiments

The presented use case demonstrates that different action plans
enerated by the pattern-based action engine show varying scheduling
erformance. The scheduling performance may depend on (1) the
umber of actions in a given action requirement, (2) the number of
onflicts between the actions in a given action conflict, and (3) the type
f conflicts. To evaluate the scheduling performance of the proposed
ction engine in a comprehensive manner, we design the following
esearch questions:
13
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• RQ1: How do the number of actions in the action requirement
and the number of conflicts in the action conflict, affect the
computation time and scheduling performance?

• RQ2: How do different action conflicts of the same size affect
the computation time and scheduling performance of the action
planner?

In the following, we explain experiments to answer the afore-
entioned research questions. The source code and manual for the
xperiments is publicly available at https://github.com/aopm/pattern-
ased-action-engine.git.

.2.1. Experiments regarding RQ1
To address the first research question, we establish a pool of 1000

ctions and generate nine distinct action conflict scenarios, each repre-
enting a different level of conflict among action pairs. For example, the
cenario denoted as ‘‘action conflict (10%)’’ reflects conflicts occurring
n 10% of all possible action pairs. With these conflict scenarios, we
hen generate action plans involving various numbers of actions from
ifferent action requirements, ranging from 100 to 1000.
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In this experimental setup, we assume each action has a uniform
duration of 1. We maintain this constant duration to control for po-
tential variability it may introduce, enabling us to better isolate and
understand the effects of our primary variables of interest: the number
of actions within an action requirement and the degree of conflict
between actions in an action conflict.

In assessing scheduling performance, we utilize makespan as our
evaluative measure, primarily due to its direct alignment with the
objectives of our proposed action planner. Moreover, makespan of-
fers a valuable means to determine whether necessary actions are
being planned and executed quickly for the enhancement of business
processes.

Fig. 16(a)–(b) shows the runtime of the action planner when plan-
ning a variable number of actions from 100 to 1000 with the nine action
conflicts. Each line in Fig. 16(a) represents the runtime of planning the
variable number of actions with an action conflict. For instance, the
pink-colored line in Fig. 16(a) describes the runtime of planning the
variable number of actions with action conflict 90%. The experimental
results show that the runtime increases quadratically to the number of
actions in an action requirement for each action conflict. As the number
of actions in an action requirement increases, the runtime difference
between different action conflicts increases. For instance, the runtime
difference between action conflict (90%) and action conflict (80%) is
around 5 s with 500 actions in an action requirement and around 35 s
with 1000 actions in an action requirement.

Each line in Fig. 16(b) describes the runtime of planning the actions
of action requirements with different action conflicts. For instance, the
yellow-colored line in Fig. 16(b) describes the runtime of planning 1000
actions of an action requirement with different action conflicts. It shows
that the runtime increases proportionally to the number of conflicts
between actions. When the number of actions in the action requirement
is less than or equal to 200, almost no differences exist in the runtime.

Next, Fig. 16(c)–(d) shows the makespan of the action planner when
planning a variable number of actions of different action requirements
from 100 to 1000 with the nine different action conflicts. Each line in
Fig. 16(c) represents the makespan of action plans generated with the
variable number of actions and an action conflict of a fixed number of
conflicts. For instance, the pink-colored line describes the makespan
of action plans generated for the variable number of actions with
action conflict (90%). The experimental result shows that the makespan
increases linearly to the number of candidates for each action conflict.

As shown in Fig. 16(d), the higher the number of conflicts is, the
higher the makespan is. However, the makespan shows more significant
increases for specific changes in the number of conflicts. For instance,
when action conflict changes from action conflict (40%) to action conflict
(50%), the makespan increases more than other changes for each
number of actions in the action requirement.

5.2.2. Experiments regarding RQ2
The previous experiment considers ten action requirements and nine

action conflicts to evaluate the impact of the number of actions and the
number of conflicts on the scheduling performance and computation
time. In this experiment, we shift our focus to understanding the
effects of varying conflict relationships. More specifically, we aim to
investigate how different conflict relationships impact the planning
process, even when the total number of conflicts remains constant.

To conduct this experiment, we utilize an action requirement in-
volving 500 actions. We subsequently define 99 categories of action
conflicts. Each category represents a specific percentage of conflicts
among the actions. For example, ‘‘action conflict (1%)’’ symbolizes
conflicts in 1% of all possible action pairs, while ‘‘action conflict (99%)’’
represents conflicts in 99% of all action pairs. Within each category,
we alter the conflict relationships while keeping the overall number of
conflicts constant.

Fig. 17 shows the makespan of the action planner when planning
14

the 500 actions under different categories of action conflicts. Each box
plot showcases the makespan when planning the 500 actions with ten
unique conflict relationships in the respective category. For instance,
the first box plot of action conflict (1%) describes the makespans of
planning 500 actions with ten different action conflicts with the same
total number of conflicts (i.e., 1% of the action pairs have conflicts),
but varying conflict relationships. The experimental results show that
the variance of makespans continuously increases until a certain point
around action conflict (50%) and incrementally decreases afterward on
a small scale. The variance is significantly small when the number of
conflicts is minimal, e.g., 1 and 2 percent of all the action pairs, and
the number of conflicts is substantial, e.g., 99 percent of all the action
pairs.

Next, Fig. 18 shows the runtime of the same experiment. Each box
plot signifies the runtime while planning 500 actions with ten different
conflict relationships in the corresponding category. For instance, the
first box plot of action conflict (1%) describes the runtime of planning
500 actions with ten different action conflicts with the same total num-
ber of conflicts (i.e., 1% of the action pairs have conflicts), but varying
conflict relationships. Unlike the makespan, the runtime variance incre-
mentally increases as the total number of conflicts increases. However,
the runtime does not show significant differences when almost all the
action pairs have conflicts, i.e., with action conflict (99%). In some
cases, the runtime is hugely higher than the others. For instance, one
of the action conflicts in action conflict (75%) shows an exceptionally
high runtime, even higher than the larger size of action conflicts does,
e.g., action conflict (76%) and action conflict (78%).

6. Discussion

This section presents a discussion of the evaluation results, limita-
tions, and implications of this work.

6.1. Evaluation results

The use case on the loan application process (cf. Section 5.1) demon-
strates that real-life business processes entail temporal patterns of
operational constraints, and the proposed pattern-based action engine
effectively analyzes such temporal patterns and generates necessary
process management actions to deal with the resulting problems. First,
a process analyst can flexibly design action graphs using graphical
notation. In the use case, we designed an action graph that tackles six
temporal patterns of operational constraints with seven actions. Second,
constraint instances can be continuously monitored, and actions can
be automatically generated based on the designed action graph. In
the use case, we monitored the loan application process weekly and
automatically generated actions for the coming days. Finally, the pro-
posed action engine’s action planner optimizes the generated actions’
schedule. In the use case, a conflict-free action plan of the optimal
makespan was successfully produced for each week.

As we analyzed the use case, we made noteworthy observations.
First, due to uncertain demands for loans and flexible terms for commu-
nications, the process showed dynamic behavior each week, resulting
in the occurrence of various temporal patterns. Therefore, in some
weeks, most of the seven actions were planned, whereas only a few
were planned for the other weeks. This, in turn, resulted in varying
makespans of the action plans in other weeks. Second, although the
action planner is not implemented to optimize the total waiting time
and total flow time, all the action plans for the 12 weeks showed the
minimum total waiting time and flow time. Third, the waiting time of
an action plan results from a specific action in the action requirement.
This is because the action is often planned together with its conflicting
actions. For instance, 𝑎𝑙𝑜𝑎𝑛6 is often planned together with 𝑎𝑙𝑜𝑎𝑛5 , while
𝑎𝑙𝑜𝑎𝑛4 is always planned together with 𝑎𝑙𝑜𝑎𝑛3 , leading to the delay of 𝑎𝑙𝑜𝑎𝑛6
and 𝑎𝑙𝑜𝑎𝑛4 until 𝑎𝑙𝑜𝑎𝑛5 and 𝑎𝑙𝑜𝑎𝑛3 are completed, respectively.

The experimental results (cf. Section 5.2) demonstrated that the

runtime of the proposed action planner is quadratic to the number of
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Fig. 16. Experimental results to show the scalability and performance of the proposed action engine.
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ctions in a given action requirement and proportional to the number
f conflicts in a given action conflict. For instance, when the number of
ctions in the given action requirement is 1000, and 90% of the actions
ave conflicts, the runtime is 250 seconds. Since the number of process
anagement actions in real-life business processes does not scale to
housands and the automatic generation of such actions does not occur
very minute, the proposed approach is scalable to be deployed in
eal-life business processes.

.2. Limitations

Although the use case shows the feasibility of the proposed ac-
ion engine in a real-life business process, it was not conducted in
he organization and, thus, lacks the actual application of the action
lans to the process. Indeed, it is essential to conduct the case study
n the organization to evaluate the effects of actions due to various
actors (Dees et al., 2019). For instance, diverse influencing factors may
rise while applying the actions, e.g., business processes are affected
y social factors such as organizational frictions (de Leoni et al., 2020).
dding a new resource to a task, in principle, increases the productivity
15
f the task. However, considering the possible organizational frictions
f the action, it can also negatively impact productivity.
Second, we abstract from defining actions generated by the action

ngine, leaving it up to domain-specific experts. A recent development
n workflow automation systems is a promising solution to translating
bstracted actions into formats the source systems can execute. For
nstance, Make1 is a web-based automation platform that provides a
ast amount of workflow automation scenarios in various information
ystems, e.g., SAP S/4HANA,2 ServiceNow,3 HubSpot,4 with visualiza-
tions for the scenarios. For instance, one can connect SAP S/4HANA to
create automated visual workflows, e.g., canceling a supplier invoice,
deleting a credit memo request, etc.

Third, the action planner of the proposed action engine resolves
the conflicts between the actions of an action requirement. In other
words, it does not consider the action instances already being executed

1 https://www.make.com/
2 https://www.sap.com
3 https://www.servicenow.com
4
 https://www.hubspot.com
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Fig. 17. Experimental results showing the effect of different action conflicts of the same size on the scheduling performance of the proposed action engine.
in the system. For instance, when applied weekly, it analyzes constraint
instances in a week, generates actions to tackle the issues in the week,
and produces action instances for the coming days. However, if the
action instances range longer than a week, the newly generated action
instances may conflict with the previous week’s action instances. The
action planner needs to be extended to consider such ongoing action
instances when planning the actions of action requirements.

Lastly, our proposed model produces an action plan for a fixed
action requirement. As demonstrated in the evaluation, this approach
may result in the start of action execution in the week following the
detection of problems. While this might appear delayed, it serves a spe-
cific purpose in scenarios that do not mandate immediate intervention
and are better addressed through advanced planning and subsequent
execution. For instance, situations that necessitate the reassignment
of resources or complex logistical coordination stand to benefit from
this approach. However, there are situations that demand prompt
response, and any delay could result in the issue dissipating before
action is taken. To deal with such situations, it is necessary to extend
the proposed approach to incorporate planning for ‘‘streaming’’ action
requirements, enabling to plan and execute actions as soon as problems
arise.
16
6.3. Implications

Our work has important implications from both academic and prac-
tical viewpoints. From an academic research viewpoint, this work
provides the foundation for developing novel techniques for analyzing
temporal patterns of operational constraints, i.e., operational problems.
For instance, one can extend action graphs to restrict the time of
evaluating the presence of temporal pattern trees, e.g., if the temporal
pattern tree occurs in the last three days of the given constraint
instances. Moreover, the generation of action requirements can be
enhanced by extending action graphs. For instance, one can add the due
date constraint to action graphs, e.g., the corresponding action should
be executed in three days.

Furthermore, this work provides the formal architecture upon which
novel techniques for generating action requirements and planning ac-
tion instances can be developed. In this work, we use a brute-force
approach to implement the generation of action requirements. Instead,
other approaches with different analytical advantages or computational
efficiencies can be deployed to implement the action generation. More-
over, our implementation of action planners optimizes the makespan of
action plans. Depending on various purposes, one can define different
objectives, e.g., optimizing the total waiting time of action plans, and
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Fig. 18. Experimental results showing the effect of different action conflicts of the same size on the runtime of the proposed action engine.
evelop different algorithms to achieve the objectives. In addition, the
ction planner can be extended to resolve different types of conflicts,
.g., effect-based conflicts and dependency-based conflicts.
Besides, in real-life business processes, it is common to observe

ariations and changes in process behavior, i.e., concept drifts (Adams
t al., 2023). In order to implement effective techniques for action
ngines, we need to consider such concept drifts. In particular, the
esign of action graphs should be adapted accordingly to the concept
rift so that they remain relevant in varying situations. To this end,
pportunities exist for fellow scholars to connect the detection, char-
cterization, and explanation of concept drifts in business processes to
he dynamic and adaptive design of action graphs.
Furthermore, the proposed action engine can be extended by dis-

inguishing between observed and predicted constraint instances. The
nput for the action engine is a collection of constraint instances that
ay be observed using backward-looking techniques and predicted
sing forward-looking techniques. For example, an approach suggested
n Park and Song (2020) predicts the performance of business processes
n a given time window and can be used to produce such predicted
constraint instances. The significance of these forecasted operational
17
constraints may vary, potentially influenced by factors like the likeli-
hood or precision of the prediction. To optimize its effectiveness, an
action engine can be designed to assign varying weights to constraint
instances, thereby prioritizing those constraint patterns bearing higher
weights.

From a practical viewpoint, this work allows organizations to con-
tinuously analyze temporal patterns of operational constraints detected
by various process monitoring techniques and automatically connect
the resulting insights into concrete forms of actions. The automated
actions tackle the temporal patterns of operational constraints exist-
ing in organizations’ business processes and contribute to improving
the process. This allows organizations to maintain competitive advan-
tages in fast-evolving and dynamic business environments. Moreover,
the proposed action engine involves practitioners in designing action
graphs. This allows them to leverage domain knowledge to define
temporal patterns of operational constraints and elicit actions to deal
with the temporal patterns, facilitating the adoption of the technique.
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7. Conclusion

Existing approaches in action-oriented process mining consider op-
erational constraints as temporally independent and point-based data,
generating actions based on relatively simple occurrence rules (cf.
Fig. 1). Moreover, they do not consider possible conflicts between
actions that are prevalent in reality when triggering the generated ac-
tions. This paper tackles this research gap by proposing a pattern-based
action engine to analyze complex temporal patterns of operational
constraints and produce conflict-free actions by considering possible
conflicts between the actions.

Existing approaches in action-oriented process mining view opera-
tional constraints as temporally independent and point-based data and
do not consider the potential conflicts between actions. This paper
aims to address this research gap by introducing a pattern-based action
engine. This action engine is designed to analyze the intricate temporal
patterns of operational constraints and produce conflict-free actions,
while considering the potential conflicts that might arise between
actions.

The proposed action engine consists of three phases. First, domain
experts design action graphs that are graphical notations consisting of
two types of nodes, i.e., temporal pattern trees and actions, and edges
connecting the nodes. Using the graphical notations, one can visually
define action graphs. Second, the action generator evaluates if the
temporal patterns specified in the action graphs occur in the constraint
instances of the time window and generates action requirements that
describe which actions need to be executed for how long. Finally, the
action planner produces an action plan such that no conflicts occur
during the execution of the actions.

We demonstrated a use case using the data of a real-life loan
application process of a Dutch financial institute to evaluate the fea-
sibility of the proposed action engine in real-life business processes.
In the use case, we designed an action graph to tackle the redundant
operational costs caused by the cancellation of applications. Afterward,
we applied the action engine to the loan application process with
the action graphs for 12 weeks. The use case demonstrates that the
proposed pattern-based action engine effectively analyzes temporal
patterns of operational constraints existing in the real-life business
process and automatically generates actions to tackle the risks caused
by the patterns. Furthermore, we conducted experiments to evaluate
the scalability and performance of the proposed action engine.

In future work, we plan to apply the proposed action engine in real-
life business processes. This application will enable us to collaborate
with domain experts to derive actual issues present in the process
and to exercise full control in addressing these problems with the
suggested actions. Subsequently, this application will also allow us to
assess the real-world efficacy of the actions generated by our proposed
action engine in resolving operational issues. For example, we could
measure the impact of these actions by comparing Key Performance
Indicators (KPIs) before and after the implementation of the proposed
actions. Moreover, we plan to extend the proposed action engine’s
implementation to generate executable actions by incorporating work-
flow automation systems. Another interesting direction for future work
is to extend the action planner such that the plans are optimized to
maximize the impact of actions. To that end, we may predict the impact
of generated actions and extend the objective of action planners to
maximize the overall impact of the actions.
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