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Abstract. Process mining enables extracting insights into human re-
sources working in business processes and supports employee manage-
ment and process improvement. Often, resources from the same organi-
zational group exhibit similar characteristics in process execution, e.g.,
executing the same set of process activities or participating in the same
types of cases. This is a natural consequence of division of labor in orga-
nizations. These characteristics can be organized along various process
dimensions, e.g., case, activity, and time, which ideally are all consid-
ered in the application of resource-oriented process mining, especially
analytics of resource groups and their behavior. In this paper, we use
the concept of execution context to classify cases, activities, and times
to enable a precise characterization of resource groups. We propose an
approach to automatically learning execution contexts from process exe-
cution data recorded in event logs, incorporating domain knowledge and
discriminative information embedded in data. Evaluation using real-life
event log data demonstrates the usefulness of our approach.

Keywords: execution context · resource group · event log · process min-
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1 Introduction

The success of an organization depends on how well its workforce is mobilized
and managed [4]. Modern organizations deploy their employees in business pro-
cesses [5] to deliver on products and services. In order to streamline business
processes and to improve employee satisfaction of work [5], process managers
need to be able to analyze and understand employee behavior and performance
in process execution [8].

Process mining can discover employee-related insights from event log data [14]
to support workforce analytics in the context of business processes. Often, em-
ployees (human resources) from the same organizational group (such as role,
team, department, etc.) share similar characteristics in process execution [12],
e.g., resources of the same role are in charge of a subset of process activities.



These characteristics may transcend the clustering of activities and manifest in
other dimensions including case and time, e.g., resource group taking part in a
specific type of cases, working on time shifts, or being in different locations. The
connection between resource groupings and groups’ characteristics in process
execution is a natural consequence of the specialization of work, i.e., division
of labor in an organization [4]. Some existing work on resource-oriented process
mining considers such characteristics [12,9,8] but treats different dimensions sep-
arately. Only few [15,17] has considered the characterization of resource groups
across various process dimensions holistically.

Execution context [17] is a concept proposed to enable a precise characteri-
zation of resource groups, considering various process dimensions. A set of exe-
cution contexts is defined by classifying and combining case types, activity types,
and time types. Given an event log, applying execution contexts creates a mul-
tidimensional view on event data, where subsets of the log can be linked to
the signature behavior of resource groups for analyses [16,17]. Fig. 1 illustrates
the idea. In an insurance company, there are investigators specialized in differ-
ent types of insurance claims, such as vehicles, business, and health insurance.
While these investigators may perform the same field investigation activities in
a claim handling process, they are likely to participate in only the type of cases
where their expertise fits. If we use merely the activity dimension to characterize
resources (Fig. 1a), we will not be able to discover or analyze investigators with
specialty that manifests on other process dimensions. But, when we apply exe-
cution contexts to view events from multiple dimensions (Fig. 1b), more precise
characterization and more dedicated analyses on investigators can be performed.

activities investigators

Insurance claim investigation activities

(a) link group(s) to activities only

time 
types

activity types investigators

case 
types

Insurance claim investigation activities

Vehicle 
insurance 

Business 
insurance

Health 
insurance

(b) link group(s) to execution contexts

Fig. 1: Subsets of events (dots) in a log can be linked to groups of resources as a
natural consequence of the specialization of work

Our previous work [17] has shown how to manually define execution contexts
using prior knowledge about an event log. However, it assumes the availabil-
ity of relevant domain knowledge. In this paper, we propose an approach that
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supports learning execution contexts from an event log, by exploiting the dis-
criminative information of events embedded in the data rather than relying on
domain knowledge. Our approach is built on a customized decision learning al-
gorithm and is capable of deriving categorization rules that can be used to dice
event log data to obtain execution contexts. We demonstrate the usefulness of
our approach through experiments conducted on real-life event logs.

Our research contributes a solution to the problem of learning execution
contexts, thus enhances resource-oriented process mining techniques that focus
on analyzing human resources [8] and their groups [12,16,17]. Our work also
contributes a method to derive process cube views in multidimensional process
mining research [13,2]. Process mining techniques can then be applied to selected
sublogs to analyze process variants concerned with certain groups of resources.

2 Related Work

Process mining can be applied on event logs to extract insights about human
resources participating in process execution. For many resource-oriented process
mining topics, an essential step is to identify the behavioral characteristics spe-
cific to resources or groups of resources in process execution. Then, analytics can
be conducted on resources for different purposes, e.g., mining resource profiles [8]
and mining organizational models [12,1,17]. To achieve that characterization, it is
common to consider many process dimensions, e.g., activity [12,8,1], case [12,8],
time [8], and location [9].

However, for organizational model mining, much of the literature has not
yet employed a holistic view on those various dimensions. Instead, existing work
exploits each dimension separately by modeling how resources perform different
activities (e.g., [1]), how they hand over between activities (e.g., [3]), or how
they participate in the same cases (e.g., [12]). This poses a challenge of mining
complex resource groupings where resource characteristics are concerned with
multiple dimensions, e.g., employees with the same business role but working
different shifts. To address the challenge, we need an approach that jointly ex-
ploits multidimensional event log information.

Some recent research on organizational model mining [15,17] has contributed
to addressing that literature gap. Van Hulzen et al. [15] propose the notion of “ac-
tivity instance archetype” to capture contextual factors impacting how activity
instances were executed. Activity instance archetypes can be discovered by ap-
plying model-based clustering on events enriched with selected attributes. Then,
resources are characterized by their execution of activity instance archetypes,
and resource groupings concerned with contextual factors can be discovered. In
our previous work [17], we propose the notion of “execution context”. Execution
contexts are built upon categorizing cases, process activities, and time periods.
Different from activity instance archetypes [15] (which focus on the homogeneity
of activity instances), execution contexts aim at finding a structured, multidi-
mensional way to organize event log data.
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Execution contexts can be derived from an event log based on domain knowl-
edge about existing categorization. Resources are characterized by their partic-
ipation in execution contexts. Then, resource groupings can be discovered and
analyzed using event logs, and their conformance can be checked with respect
to the logs. However, it remains a problem how such execution contexts can
be derived from event log data without relying on available domain knowledge
about a process and the event data.

In this paper, we extend our previous work [17] and explore how to automat-
ically learn execution contexts from a given event log. Outside resource-oriented
process mining, our work is relevant to the research on multidimensional process
mining. A multidimensional data model named event cube was proposed [10] to
allow exploiting and integrating different aspects of business process and pro-
viding various levels of abstraction on process data to improve business analysis.
The notion of process cube [13,2] was later proposed, which provides a more com-
prehensive view to organize both process models and their data using different
dimensions. Process cubes support OLAP (Online Analytical Processing)-like
operations dedicated to process mining, therefore enable decomposing large event
logs into smaller sublogs to enhance process mining performance and scalability.
Our idea of execution contexts resembles that of process cubes regarding the
consideration of multidimensionality. As such, our approach to learning execu-
tion contexts can be seen as a way to constructing process cube views dedicated
to resource-oriented process mining.

3 Preliminaries

A business process consists of tasks conducted in an organization to achieve a
business goal [5]. An instance of executing a process is a case [14]. An event
log (Def. 1) is a set of timestamped events recording how (human) resources
performed those tasks (i.e., process activities) within different cases.

Definition 1 (Event Log). Let E be the universe of event identifiers, UAtt be
the universe of possible attribute names, and UVal be the universe of possible
attribute values. EL = (E,Att , π) with E ⊆ E, E 6= ∅, Att ⊆ UAtt , and π : E →
(Att 6→ UVal) is an event log. Event e ∈ E has attributes dom(π(e)). For an
attribute x ∈ dom(π(e)), πx(e) = π(e)(x) is the attribute value of x for event e.

Events carry multiple data attributes, i.e., event attributes (Def. 2), which
can be either categorical or numeric, depending on features of the process and
the recording information systems. In this paper, we consider that any event
log records at least four standard event attributes: case identifier (case), activ-
ity label (act), timestamp (time), and resource identifier (resource). Each case
identifier corresponds to a unique process execution instance. Specifically, an
event attribute is a case attribute if events belonged to the same case share an
identical value on that attribute. Case identifier is a case attribute.

Definition 2 (Event Attributes). Let C ⊆ UVal , A ⊆ UVal , T ⊆ UVal and
R ⊆ UVal denote the universe of case identifiers, the universe of activity names,
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the universe of timestamps, and the universe of resource identifiers, respectively.
Any event log EL = (E,Att , π) has three special attributes from the set D =
{case, act , time}, referred to as the core event attributes, and a special attribute
res, i.e., D ∪ {res} ⊆ Att, such that for any e ∈ E:

– D ⊆ dom(π(e)),
– πcase(e) ∈ C is the case to which e belongs,
– πact(e) ∈ A is the activity e refers to,
– πtime(e) ∈ T is the time at which e occurred, and
– πres(e) ∈ R is the resource that executed e if res ∈ dom(π(e)).

Given a resource r ∈ R, let [E]r = { e ∈ E | res ∈ dom(π(e)) ∧ πres(e) = r }
denote the set of events in the log execution by that resource. [E]R =

⋃
r∈R [E]r

is the set of all events in the log that have resource information.

Types describe the categorization of events. We consider case types, activity
types, and time types (Def. 3) related to the three core dimensions of process
execution. Case types describe the categories of cases, for example, insurance
claims can be classified by the type of insurance (e.g., health insurance vs. car
insurance). Similarly, activity types categorize activity labels into groups of rel-
evant activities (e.g., claim investigation vs. customer support), and time types
categorize timestamps into periods (e.g., weekdays vs. weekends).

Definition 3 (Case Types, Activity Types, and Time Types). Let CT ,
AT , and T T denote the sets of names of case types, activity types, and time
types, respectively. The functions ϕcase : CT → P(C), ϕact : AT → P(A), and
ϕtime : T T → P(T ) define partitions over C, A, and T , respectively.

Given an event log EL = (E,Att , π), a set of types for one of the process
execution dimensions (i.e., case, activity, and time) can be derived based on a
set of event attributes, if those attributes are a set of type-defining attributes for
that dimension (Def. 4). This notion supports deriving types via partitioning the
values of some selected event attributes that are related to the categorization
of cases, activities, or times. For example, in an insurance claim process event
log, we may use case attributes “customer type” and “insurance type” as the
type-defining attributes for case types — cases can be categorized into disjoint
groups such as (“gold customer”, “health insurance”) vs. (“silver customer”,
“car insurance”, “boat insurance”).

Definition 4 (Type-Defining Attributes). Let d ∈ D be a core event at-
tribute. Given an event log EL = (E,Att , π), for any e ∈ E, let X ⊆ dom(π(e))
be some event attributes recorded in the log, π(e)�X the restriction of π(e) on X,
V = {π(e)�X | e ∈ E } the mappings of the attributes in X recorded in EL.

X is a set of type-defining attributes for d in EL, if there exists a partition
P of V , such that for all p, q ∈ P ,

p 6= q ⇒ {πd(e) | e ∈ E ∧ π(e) �X ∈ p } ∩ {πd(e) | e ∈ E ∧ π(e)�X ∈ q } = ∅,

i.e., the partition P corresponds to a partition of the set of distinct values of d
recorded in EL.
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4 Problem Modeling

In this section, we introduce how we model the problem of learning execution
contexts from an event log. We first present the idea of categorization rules for
defining the classification of case types, activity types, and time types (Sect. 4.1).
Then, we discuss how to measure the quality of execution contexts with regard
to an event log (Sect. 4.2). Finally, we formulate the execution context learning
problem based on the notion of categorization rules and the quality measures.

4.1 Categorization Rules

A set of execution contexts specifies a way of partitioning events by defining case
types, activity types, and time types. Hence, to learn execution contexts from an
event log requires learning those types, i.e., the classification of cases, activities,
and times. To this end, we propose to use categorization rules to represent types
and execution contexts.

A categorization rule is a conjunctive boolean formula (Def. 5) consisting of
one or more clauses. Each clause can evaluate an event by its value of some event
attribute. For instance, σ = customer type ∈ {gold} ∧ amount ∈ [10, 000,∞) is
a categorization rule evaluating a categorical (case) attribute “customer type”
and a numeric attribute “amount”. Given a set of events, evaluating this rule
filters events that record gold customers and amount greater than 10,000.

Definition 5 (Categorization Rule). Given an event log EL = (E,Att , π),
let d ∈ D be a core event attribute, let X ⊆ Att be a set of type-defining attributes
for d. σ =

∧
x∈X x ∈ Ux is a categorization rule, where e ∈ E and Ux ∈ P(UVal)

is a set of attribute values for x ∈ X. For any e ∈ E, σ can be evaluated as
follows: JσK(e) = true if and only if πx(e) ∈ Ux for all x ∈ X.

– [E]σ = { e ∈ E | JσK(e) } is the set of events in the log satisfying the catego-
rization rule σ.

– We introduce a default rule σtrue such that JσtrueK(e) = true for all e ∈ E.
It follows that [E]σtrue

= E.
– Any two categorization rules σ1 and σ2 are equivalent, i.e., σ1

∼= σ2, if and
only if [E]σ1

= [E]σ2
for any E ⊆ E. Otherwise, we write σ1 � σ2.

A set of categorization rules can be used to define a set of types on an event log
(Def. 6). Consider the example of defining case types. Assume an event log of the
insurance claim process has “customer type” as a case attribute. Then the set of
rules Σ1 = {customer type ∈ {gold}, customer type ∈ {silver}, customer type ∈
{bronze}} can define three case types for this event log, as long as a customer
can only be either gold, silver, or bronze. But, for example, another set with two
rules, Σ2 = {customer type ∈ {gold}, customer type ∈ {silver, bronze}}, would
also define case types.

Definition 6 (Define Types by Categorization Rules). Given an event log
EL = (E,Att , π), let d ∈ D be a core event attribute. Σ is a set of categorization
rules that define a set of types on d, if and only if:
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1. for any σ1, σ2 ∈ Σ, {πd(e) | e ∈ [E]σ1
} ∩ {πd(e) | e ∈ [E]σ2

} = ∅; and
2.
⋃
σ∈Σ {πd(e) | e ∈ [E]σ } =

⋃
e∈E{πd(e)},

i.e., the subsets of events satisfying categorization rules in Σ induce a partition
of all values of d recorded in EL.

Execution contexts can be defined by three sets of categorization rules that
define case types, activity types, and time types, respectively (Def. 7). Given
an event log, a set of execution contexts enables (i) projecting the events as
data points onto a three-dimensional data space and (ii) partitioning them into
sub-logs that can be selected and linked with resources for analyses [16,17].

Definition 7 (Execution Context). Given an event log EL = (E,Att , π), let
Σcase , Σact , and Σtime be three sets of categorization rules that define case types,
activity types, and time types, respectively. CO = Σcase ×Σact ×Σtime is a set
of execution contexts defined by the three sets of categorization rules.

CO specifies a way of partitioning EL. Given an execution context co =
(σc , σa , σt) ∈ CO, [E]co = [E]σc

∩ [E]σa
∩ [E]σt

is the set of events in the log
having that execution context.

4.2 Quality Measures for Execution Contexts

Given an event log, any categorization rules — as long as they fulfill the require-
ment (Def. 6) — can be proposed for defining types, resulting in many candidate
sets of execution contexts. In this section, we discuss how to measure the quality
of execution contexts learned from event logs.

Execution contexts can be applied to characterize resource behavior that
concern certain process execution features determined by the specialization of
work, a.k.a, division of labor [4]. On the one hand, when specialization is low
in a process, resources tend to be interchangeable when performing in process
execution, and events they originated are mostly similar. On the other hand,
when specialization is high, resources are limited to undertaking specific kinds
of tasks, as exhibited by the differences among their originated events. This
idea motivates us to consider the following criteria for a set of good execution
contexts: (i) events originated by the same resource should be partitioned into
few execution contexts; and (ii) events in the same execution contexts should be
originated by few resources.

Fig. 2 illustrates the idea. When resources are considered generalized due
to low specialization of work, a small number of execution contexts should be
sufficient. When (a group of) resources are highly specialized, it is desired to
have dedicated execution contexts for each of them to capture their specific
characteristics. We define two quality measures, namely dispersal and impurity.

Dispersal. Dispersal measures the extent to which events originated by the same
resource disperse across different execution contexts (Eqn. 1), and yields values
in [0, 1]. High quality execution contexts have low dispersal, i.e., characterizing
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Fig. 2: Execution context quality: It is desired to use few dedicated execution
contexts (cells) to characterize resource behavior recorded in events

the behavior of each individual resource with few execution contexts. Given an
event log EL and a set of execution contexts CO ,

Dis(EL,CO) =
∑
r∈R

(
|[E]r|
|[E]R|

×
∑
e1,e2∈[E]r

dCO(e1, e2)(|[E]r|
2

) )
, (1)

is the dispersal of CO with regard to EL. In the context of the given execution
contexts CO , any event e ∈ E corresponds to a unique execution context coe =
(cte, ate, tte) ∈ CO , for which e ∈ [E]coe . Then, for any two events e1, e2 ∈ E, we
define the distance between them using their corresponding execution contexts
coe1 = (cte1 , ate1 , tte1) and coe2 = (cte2 , ate2 , tte2), that is,

dCO(e1, e2) =
[cte1 � cte2 ] + [ate1 � ate2 ] + [tte1 � tte2 ]

ndim
, (2)

where [ϕ] is the Iverson bracket that returns 1 if a boolean formula ϕ holds and 0
otherwise, and ndim ∈ {1, 2, 3} is the number of process dimensions considered
in a set of execution contexts. By default, we let ndim = 3. However, it is
possible that there are not any types defined on a dimension. For example, the
case dimension can be omitted if, for any (ct , at , tt) ∈ CO , ct = σtrue, and thus
we have ndim = 2. Specifically, if there is only one execution context for all
events in a log, then Dis(EL,CO) = 0.

Impurity. Impurity measures the extent to which the same execution context
contains events originated by different resources. A set of execution contexts is
good when most of them contain only events originated by few resources, i.e.,
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characterizing the behavior specific to each individual resource. This is built
upon the existing measure of entropy in data mining. Given an event log EL and
a set of execution contexts CO ,

Imp(EL,CO) =
1∑

r∈R pr log2 pr

∑
co∈CO

(
|[E]R ∩ [E]co |
|[E]R|

×
∑
r∈R

pr,co log2 pr,co

)
,

(3)

is the impurity of CO with regard to EL, where

pr =
|[E]r|
|[E]R|

, pr,co =
|[E]r ∩ [E]co |
|[E]R ∩ [E]co |

(4)

are the relative frequency of events originated by a resource r in terms of the
entire log and an execution context co, respectively. Impurity yields a value
in [0, 1]. If there is only one execution context for all events in a log, then
Imp(EL,CO) = 1.

Problem Statement Learning execution contexts is to derive from an event
log three sets of categorization rules that define case types, activity types, and
time types, respectively, such that the resulting execution contexts have low
dispersal and low impurity with respect to the input log.

5 Problem Solution

We propose an approach based on decision trees to solve the problem of deriving
categorization rules (see Fig. 3). Below, we elaborate on the approach.

User-
specified 

Rules
Decision 

Tree

Derive 
Attribute 

Specification

User domain knowledgeUser domain knowledge

Learn 
Decision Tree

Parse 
Categorization Rules

Type-
Defining 

Attributes

Event logEvent logEvent log

Execution 
Contexts

Fig. 3: Approach to deriving categorization rules from an event log to learn ex-
ecution contexts

9



5.1 Derive Attribute Specification

Inputs to the approach include an event log and domain knowledge from the
user. First, an attribute specification (Def. 8) is derived to capture user domain
knowledge about the events attributes in the log. An attribute specification
comprises (1) XEL

case , XEL
act , X

EL
time , which are three sets of type-defining attributes

(see Def. 4) regarding case types, activity types, and time types; and optionally,
(2) Λ, which is a set of user-specified categorization rules capturing any existing
categorization of values for those event attributes. If user-specified categorization
rules are unavailable for any event attribute x, we let Λ(x) = ∅.

Definition 8 (Attribute Specification). Let EL = (E,Att , π) be an event
log and Σ be the set of all possible categorization rules defined on Att. S =
(XEL

case , X
EL
act , X

EL
time , Λ) is an attribute specification on EL for learning catego-

rization rules. XEL
case ⊆ Att, XEL

act ⊆ Att, and XEL
time ⊆ Att are three disjoint,

non-empty sets of type-defining attributes. Λ : Att 6→ P(Σ) defines a set of
categorization rules for the event attributes in XEL

case

⋃
XEL

act

⋃
XEL

time .

An attribute specification informs how attributes values should be handled
in the following step of decision tree learning, and subsequently how the cate-
gorization rules extracted from a decision tree specify case types, activity types,
and time types.

5.2 Learn Decision Tree

We apply a decision tree induction framework to extract categorization rules
from an event log. In decision tree learning, a dataset of multivariate data tuples
is iteratively partitioned into smaller subsets by deriving splitting rules on data
attributes. The output is represented in a tree structure, where tree nodes hold
the subsets of the input data and branches record the disjunctive splitting rules
used to obtain the subsets. Decision tree learning is a common solution for
classification tasks. For that purpose, splitting rules are often derived following
a greedy heuristic that minimizes the information needed to classify data tuples.

We decide to apply decision tree learning since it resembles how we expect to
develop execution contexts defined by categorization rules — deriving rules to
partition a dataset based on data attributes. In addition, the tree representation
provides an intuitive way to understand how execution contexts are derived in-
crementally. However, compared to the conventional decision tree learning prob-
lem, learning rules for execution contexts imposes two challenges: (i) we require
splitting rules extracted from a decision tree to be categorization rules which
can be used for defining types (see Def. 6); and (ii) the goal of learning is to
derive execution contexts instead of building a predictive model for classification
or regression.

To address the first issue regarding categorization rules, we choose to con-
struct Oblivious Decision Trees (ODT) [7]. An ODT is different from a conven-
tional decision tree in such a way that an ODT’s nodes at the same level are
constructed by splitting rules based on the same data attribute. For any two leaf
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nodes on an ODT, if we project their data subsets onto a split attribute, then
the two projected sets are either disjoint or identical. This feature ensures that
a learned ODT can be used to produce categorization rules for defining types.

To address the second issue regarding the learning goal, we use harmonic
mean to combine dispersal and impurity and apply a greedy heuristic — when-
ever there exist several sets of categorization rules as candidates, choose the set
that leads to the lowest harmonic mean.

Algorithm 1 describes the customized decision tree learning algorithm. It be-
gins with an empty root node which holds all events in a given log (Line 1). At
each iteration, the best split will be found, i.e., finding the best type-defining
attribute and its corresponding categorization rules to be applied (Line 3). This
selection (FindBestSplit) is based on calculating the harmonic mean of dis-
persal and impurity. We elaborate on this step later. If that best attribute for
splitting can be found, the decision tree is expanded by applying the catego-
rization rules to every leaf node and growing a subtree there. This ensures that
the tree is grown as an ODT (Line 5). The decision tree keeps growing either
until the next best split cannot be found (Line 6–7) or until the height of the
decision tree exceeds a preset maximum value (Line 2). After the iterative tree
growth stops, we traverse every level of the current tree and select a subtree to
be returned for the subsequent step of parsing categorization rules (Line 10).

Below, we explain the two key operations in the procedure, FindBestSplit
(Line 3) and SelectSubTree (Line 10).

FindBestSplit is a sub-procedure for selecting a type-defining attribute and
its corresponding categorization rules, i.e., the best split. First, for all type-
defining attribute given in the attribute specification (x ∈ XEL

case ∪XEL
act ∪XEL

time),
we generate the corresponding categorization rules as candidate splits. When
Λ(x) 6= ∅, i.e., there exist user-specified categorization rules for x, we use those
rules. Otherwise, we consider x a generic data attribute and apply methods in
conventional decision tree learning [6] to infer possible ways to split on x: if
x is numeric, apply a histogram-based algorithm; if x is categorical, compute
the possible two-subset partitions over its values and sample from all partitions.
Note that the attributes are used with replacement, i.e., x can be split more
than once in the iterative procedure.

Algorithm 1: The customized decision tree learning algorithm
input : EL = (E ,Att, π), an event log; S, an attribute specification;

H, a constant specifying the maximum height of the tree
output: a decision tree

1 root ← CreateTreeNode(E)
2 for h← 1 to H do
3 attr , rules ← FindBestSplit(root,EL, S)
4 if attr 6= ∅ then
5 ExpandTreeOnEveryLeafNode(root, attr , rules)
6 else
7 break
8 end

9 end
10 return SelectSubTree(root)
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After the candidate splits are generated for every type-defining attribute, we
need to evaluate and select one of them to expand the tree. To do this, test how
the current tree would be expanded if a candidate split applied. Then, parse the
full set of categorization rules from the “test tree” to determine the execution
contexts (see Sect. 5.3). This way, we can obtain COx for every candidate split.
Finally, the best split can be decided by choosing the candidate whose COx

would lead to the lowest harmonic mean of dispersal and impurity.
SelectSubTree is a sub-procedure for deciding the subtree to be returned.

Here, a subtree refers to a subtree sharing the same root node as the entire
decision tree, i.e., any intermediate result obtained during the iterative tree
growth process or the complete decision tree. To make the selection, we first
apply the elbow method to identify turning points where dispersal and impurity
changed significantly. Then, a single subtree can be decided by selecting from
the identified turning points.

The values of dispersal and impurity are expected to show opposite trends as
a decision tree grows. Initially, all events are placed together (held by the root
node), and hence dispersal is 0 while impurity is 1. As the decision tree grows, the
number of leaf nodes increases (so is the number of their corresponding execution
contexts), which leads to the increase in dispersal and decrease in impurity.

5.3 Parse Categorization Rules

The parsing of categorization rules is to transform the rules recorded on a de-
cision tree into execution contexts that we need (Def. 7). This transformation
happens both when we need to evaluate intermediate results (FindBestSplit)
and also when we need to obtain the final execution contexts after the decision
tree learning stops.

To parse categorization rules, we first follow the conventional way of rule
extraction from a decision tree. That is, for each path from the root to a leaf
node, a decision rule is formed by conjoining all the rules recorded along the
path. Then, for every decision rule obtained, we use the attribute specification
as a reference to determine which part of the decision rule is related to case
types, activity types, or time types, respectively. Formally, every such decision
rule σ can be written as a conjunction (σc ∧ σa ∧ σt), where any of σc, σa, σt
can be a default rule (σtrue) if no type-defining attributes are included for any
of the core event attributes.

As such, we will be able to transform a decision rule related a leaf node of
a decision tree into an execution context co = (σc, σa, σt). A set of execution
context CO is obtained by parsing the categorization rules for all leaf nodes.

6 Experiments

We implemented the approach and evaluated it through an experiment. The aim
is two-fold: (i) to test the feasibility of using our approach to learn execution
contexts, and (ii) to demonstrate how the learned execution contexts can be
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applied for resource-oriented analyses. We share our implementation and the
experiment details in an open repository online3.

6.1 Experiment Setup

We evaluated our approach on a publicly available, real-life event log dataset,
BPIC-154, which consists of five event logs that record how five Dutch munici-
palities performed in a building permit application handling process. We merged
them into a single log for the experiment.

Some event attributes were used as type-defining attributes for case types and
activity types: phase is an event attribute indicating the phase of the process
where activities belong to; and case parts is a case attribute indicating the type
of project related to the building permit applications. For time types, we derived
two type-defining attributes from the original timestamps and appended them
to the event logs, i.e., weekday and am/pm (AM time vs. PM time).

Table 1 describes the experiment dataset and the attribute specification used
for learning execution contexts. Specifically, for attribute case parts, we defined
the following user-specified categorization rules based on the original description
of the data — two rules partition the values of case parts into two subsets,
depending on whether a value contains the string ‘Bouw’ (indicating the case is
related to construction) or not.

Table 1: The event log dataset and the attribute specification used for learning
execution contexts

Log statistics Attribute specification

#events #cases #activities #resources Attcase Attact Att time

193453 5599 154 71 {case parts} {phase} {weekday,am/pm}

6.2 Learning Execution Contexts

We applied our approach with the maximum tree height H set to 10 and selected
the subtree corresponded to the point where the harmonic mean changed most
significantly. Fig. 4 illustrates the values of dispersal and impurity per iteration
when learning a decision tree and the of changes of their harmonic mean. From
Fig. 4a and Fig. 4b, we can observe a clear upward trend of dispersal values and
a downward trend of impurity values. This confirms our discussion on the feature
of decision tree learning as mentioned before (see Sect. 5.2). There are obvious
changes to dispersal and impurity from iteration 5 onwards, which align with the
changes of their harmonic mean illustrated in Fig. 4c. We selected iteration 7

3 Implementation and experiment details: https://royjy.me/to/learn-co
4 BPIC-15 dataset: https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-
305d167a0ec1
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as the “elbow” point, where the increase of harmonic mean starts to slow down.
We used its corresponding subtree to parse categorization rules and obtained a
set of 12 execution contexts.

(a) dispersal (b) impurity (c) ∆harmonic mean

Fig. 4: Dispersal, impurity, and changes of their harmonic mean per iteration

Table 2 shows the learned execution contexts. They are sorted by the num-
ber of events they contain. We can see that case type remains the default rule
(σtrue), which means that attribute case parts was not selected to derive catego-
rization rules. A possible reason is that resources are similar in terms of handling
applications concerned with different types of projects. For the activity types,
we find the cluster of phases ‘0’, ‘1’, ‘4’, ‘5’ as a single type. These phases are
related to the frequently executed activities in the process, where most resources
participated in. Finally, the derived time types are only based on partitioning
weekdays, which show a clear pattern that aligns with common working hours.
The other type defining attribute am/pm was not used, implying similarities of
resource workload in the morning vs. afternoon. These findings about types are
consistent with our visual analyses on the behavior of the five municipalities,
reported in our previous work [16].

Table 2: The 12 execution contexts learned from log BPIC-15
id Case type Activity type Time type #events #res.

1

σtrue

(phase ∈ {‘0’,‘1’,‘4’,‘5’}) (weekday ∈ {‘Mon’,‘Tue’,‘Wed’,‘Thu’,‘Fri’}) 150666 70
2 (phase ∈ {‘3’}) (weekday ∈ {‘Mon’,‘Tue’,‘Wed’,‘Thu’,‘Fri’}) 17836 53
3 (phase ∈ {‘2’}) (weekday ∈ {‘Mon’,‘Tue’,‘Wed’,‘Thu’,‘Fri’}) 16451 57
4 (phase ∈ {‘8’}) (weekday ∈ {‘Mon’,‘Tue’,‘Wed’,‘Thu’,‘Fri’}) 6871 47
5 (phase ∈ {‘0’,‘1’,‘4’,‘5’}) (weekday ∈ {‘Sat’}) 778 35
6 (phase ∈ {‘7’}) (weekday ∈ {‘Mon’,‘Tue’,‘Wed’,‘Thu’,‘Fri’}) 585 32
7 (phase ∈ {‘0’,‘1’,‘4’,‘5’}) (weekday ∈ {‘Sun’}) 149 22
8 (phase ∈ {‘3’}) (weekday ∈ {‘Sat’}) 49 6
9 (phase ∈ {‘2’}) (weekday ∈ {‘Sat’}) 41 6
10 (phase ∈ {‘6’}) (weekday ∈ {‘Mon’,‘Tue’,‘Wed’,‘Thu’,‘Fri’}) 15 5
11 (phase ∈ {‘8’}) (weekday ∈ {‘Sat’}) 10 1
12 (phase ∈ {‘7’}) (weekday ∈ {‘Sat’}) 2 2

Total 193453 71

#res.: number of unique resources performed in an execution context
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6.3 Applying Execution Contexts

This section reports how the learned execution contexts can be applied to (i)
the analysis of resource profiles [8], i.e., describing the behavior of resources
in process execution, and (ii) the discovery of organizational models [12], i.e.,
finding groups of resources having similar characteristics.

Resource Profile Analysis For an illustration purpose, we selected the 31
resources who performed in the last 6 execution contexts (i.e., id 7–12) and
calculated their activity frequency [8] with regard to those execution contexts.

Fig. 5 shows a heatmap that visualizes the results. Darker colors indicate
larger values. We can see that resources exhibit clear differences. Most of them
only worked in execution context 7, which is the overtime work (‘Sun’) on the
main phases (‘0’, ‘1’, ‘4’, ‘5’). Another distinct pattern is concerned with re-
sources working only in execution contexts 8 and 9. They showed balanced ac-
tivity frequency regarding the two activity types (phase ‘3’ and ‘2’). Execution
context 11 is specific to a single resource ‘560519’. This is an interesting observa-
tion compared to execution context 4, where the same set of activities performed
on weekdays were covered by much more resources (47 of them).
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Fig. 5: Visualizing resources’ activity frequency given execution contexts 7–12

Organizational Model Discovery The original AHC method [12] derives an
“originator (resource) by activity” matrix, feeds it to agglomerative hierarchical
clustering, and gets resource clusters as the output. In our demonstration, we
use a “resource by execution context” matrix instead, i.e., count how frequently
resource conducted events having specific execution contexts. We keep identical
settings on all other steps and apply the silhouette score [11] to evaluate the
quality of the outputs. We varied the desired cluster number between 2 and 70.

Fig. 6 shows the quality of discovery results, comparing between the use
of activity labels vs. execution contexts. The X-axis corresponds to the desired
number of resource clusters specified as a parameter, and the Y-axis corresponds
to the quality (silhouette score) of the discovery result. We can observe that using
execution contexts, compared to the original method, led to better output qual-
ity in most situations. This indicates that using the learned execution contexts
contributed to uncover resource groups having more distinct characteristics.
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Fig. 6: Quality of discovery results measured by their silhouette scores, per se-
lected number of clusters

Summary The above applications of our approach show that it can be ap-
plied before conducting resource-oriented process mining. The use of attribute
specifications allows directly encoding user knowledge about the input event log,
making the approach configurable with regard to event logs with different fea-
tures. Learned execution contexts provide a multidimensional view on the input
log, where sublogs may be related to behavior of specific resources. This can be
a starting point to decompose large and complex event logs, so that resource-
oriented process mining can be applied to analyze dedicated sublogs.

7 Conclusion

In this paper, we discussed the problem of learning execution contexts, which is
concerned with characterization of resource groupings in process execution, con-
sidering three core process dimensions. We proposed an approach to automat-
ically learn execution contexts using a dedicated decision-tree-based algorithm
and tested it on real-life event log data.

Our current work has certain limitations. For one, learned execution contexts
are local optimal due to the greedy heuristic and that tree induction is sequential-
forward. A possible future direction is to explore searching methods with other
heuristics, e.g., simulated annealing, to produce better near-optimal solutions.
Second, the experiment used event log data from one process to demonstrate
the usefulness of the approach. Future work can look into a more comprehensive
evaluation using event logs recording different processes and containing more
attributes. Furthermore, the proposed approach can be compared with methods
that support the discovery of multidimensional resource characteristics related
to resource groupings.
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