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Abstract. In process discovery, the goal is to find, for a given event log, the
model describing the underlying process. While process models can be repre-
sented in a variety of ways, Petri nets form a theoretically well-explored descrip-
tion language. In this paper, we present an extension of the eST-Miner process
discovery algorithm. This approach computes a set of places which are consid-
ered to be fitting with respect to a user-definable fraction of the behavior de-
scribed by the given event log, by evaluating all possible candidate places using
token-based replay. The set of replayable traces is determined for each place in
isolation, i.e., they do not need to be consistent. When combining these places
into a Petri net by connecting them to the corresponding transitions, which are
uniquely labeled for each activity in the event log, the resulting net can replay
exactly those traces that can be replayed by each of the inserted places. Thus,
inserting places without further checks may results in deadlocks and thus low fit-
ness of the Petri net. In this paper, we explore a variant of the eST-Miner, that
aims to select a subset of the discovered places such that the resulting Petri net
guarantees a definable minimal fitness while maintaining high precision with re-
spect to the input event log. Various place selection strategies are proposed and
their impact on the returned Petri net is evaluated by experiments using both real
and artificial event logs.
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1 Introduction and Related Work

More and more corporations and organizations support their processes using informa-
tion systems, which record the occurring behavior and represent this data in the form of
event logs. Each event in such a log has a name identifying the executed activity (activ-
ity name), an identification mapping the event to some execution instance (case id), a
time stamp showing when the event was observed, and often extended meta-data of the
activity or process instance. In the field of process discovery, we utilize the event log
to identify relations between the activities (e.g. pre-conditions, choices, concurrency),
which are then expressed within a process model, for example a Petri net [1–4]. This
is non-trivial for various reasons. We cannot assume that the given event log is com-
plete, as some possible behavior might be yet unobserved. Also, real-life event logs
often contain noise in the form of incorrectly recorded data or deviant behavior, which
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Fig. 1. Consider the event log L = [〈I, a, b,�〉40, 〈I, b, a,�〉60] and the set of candidate places
on the left. Assuming, that we set the eST-Miner to accept all places that can replay at least 35 %
of the event log, it would add all those places and return the Petri net on the right. Although each
individual place has at least 40 fitting traces, the whole model cannot replay any trace.

is not desired to be reflected in the process model. Correctly classifying behavior as
noise can be hard to impossible. An ideal process model can reproduce all behavior
contained in an event log, while not allowing for unobserved behavior. It should rep-
resent all dependencies between events and at the same time be simple enough to be
understandable by a human interpreter. Computation should be fast and robust to noise.
Usually, it is impossible to fulfill all these requirements at the same time. Thus, different
algorithms focus on different quality criteria, while neglecting others. As a result, the
models returned for a given event log can differ significantly.

Many existing discovery algorithms abstract from the full information given in a
log and/or generate places heuristically, in order to decrease computation time and
complexity of the returned process models. While this is convenient in many applied
settings, the resulting models are often underfitting, in particular when processes are
complex. Examples are the Alpha Miner variants ([5]), the Inductive Mining fam-
ily ([6]), genetic algorithms or Heuristic Miner. In contrast to these approaches, which
are not able to (reliably) discover complex model structures, algorithms based on re-
gion theory [7–17]) discover models whose behavior is the minimal behavior repre-
senting the input event log. On the downside, these approaches are known to be rather
time-consuming, cannot handle noise, and tend to produce complex, overfitting models
which can be hard to interpret. A combination of strategies has been introduced in [18],
which aims to circumvent performance issues by limiting the application of region the-
ory to small fragments of a pre-descovered Petri net.

In [19] we introduced the discovery algorithm eST-Miner. This approach aims to
combine the capability of finding complex control-flow structures like longterm-depen-
dencies with an inherent ability to handle low-frequent behavior while exploiting the
token-game to increase efficiency. The basic idea is to evaluate all possible places, de-
fined by all possible combinations of uniquely labeled transitions, to discover a set of
fitting ones. Efficiency is significantly increased by skipping uninteresting parts of the
search space. This may decrease computation time immensely compared to the brute-
force approach evaluating every single candidate place, while still providing guarantees
with regard to fitness and precision.

While traditional region-theory uses a global perspective to find a set of feasible
places, the eST-Miner evaluates each place separately, that is from a local perspective.
This allows us to easily enforce all kinds of constraints definable on the place level, e.g.,
constraints on the number or type of connected transitions, token throughput or similar.
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In particular, we are able to filter infrequent behavior locally, by requiring each place to
be able to replay only a certain fraction of the traces in the event log. A candidate place
will be accepted, if the event log contains sufficient support for the relation between
the activities as defined by the place. In contrast to common noise filtering techniques
which loose information by removing infrequent trace variants or infrequent activities
from the event log, this approach can also consider infrequent information to discover
relations between activities.

The local perspective of the eST-Miner ensures that all occurrences of activities
within a log can contribute to the discovered model. However, when a set of discovered
fitting places is combined into a Petri net, this Petri net allows only for the behavior
in the intersection of the behaviors allowed by all inserted places. Thus, the Petri net
may include deadlocks or dead parts, resulting in a much lower overall fitness than the
fitness of each individual place and an overly complicated model. In extreme cases,
the constructed net cannot replay any trace at all as illustrated by the small example
in Fig. 1. Assuming we decide to add places that replay only a fraction of 0.35 of the
traces, the Petri net discovered for the given event log cannot fire any transition after
the start transition.

In this paper, we aim to remedy this issue by selecting a subset of the discovered
places which can be combined into a Petri net with definable minimal fitness, while
simultaneously striving for high precision and simplicity, without loosing the desir-
able properties of the eST-Miner. Thus, we require the algorithm to maintain its ability
to discover and model non-local dependencies, to deal with infrequent behavior and
to provide guarantees without over- or underfitting. Additionally, the time and space
consumption should remain reasonable, in particular more scalable than classic region
theory approaches.

Sec. 2 provides basic notation and definitions. In Sec. 3, we briefly review the basics
of the standard eST-Miner. Our new concepts are introduced in Sections 4 and 5, and
their experimental evaluation is presented in Sec. 6. Finally, Sec. 7 concludes this work
by summarizing our findings and suggesting possibilities for future work.

2 Basic Notations, Event Logs, and Process Models

A set, e.g. {a, b, c}, does not contain any element more than once, while a multiset, e.g.
[a, a, b, a] = [a3, b], may contain multiples of the same element. The intersection of two
sets contains only elements that occur in both sets, i.e., {x, y} ∩ {y, z} = {y}, while
the intersection of two multisets contains each element with its minimum frequency,
i.e, [x, y2, z] C [y5, z2] = [y2, z]. By P(X) we refer to the power set of the set X , and
M(X) is the set of all multisets over this set. In contrast to sets and multisets, where the
order of elements is irrelevant, in sequences the elements are given in a certain order,
e.g., 〈a, b, a, b〉 6= 〈a, a, b, b〉. The size of a set, multiset or sequence X , that is |X|, is
defined to be the number of elements in X .

We define activities, traces, and logs as usual, except that we require each trace to
begin with a designated start activity (I) and end with a designated end activity (�).
Note that this is a reasonable assumption in the context of processes, and that any log
can easily be transformed accordingly.
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Definition 1 (Activity, Trace, Log). Let A be the universe of all possible activities
(e.g., actions or operations), let I ∈ A be a designated start activity and let � ∈ A
be a designated end activity. A trace is a sequence containing I as the first element, �

as the last element and in-between elements of A \{I,�}. Let T be the set of all such
traces. A log L ∈M(T ) is a multiset of traces.

In this paper, we use an alternative definition for Petri nets. We only allow for places
connecting transitions, called here activities, that are initially empty (without tokens),
because we allow only for traces starting with I and ending with �. These places are
uniquely identified by the non-empty sets of input activities I and output activities O.
Each activity corresponds to exactly one uniquely labeled transition, therefore, this pa-
per refers to transitions as activities.

Definition 2 (Petri nets). A Petri net is a pair N = (A,P), where A ⊆ A is the set of
activities including start and end ({I,�} ⊆ A) and P ⊆ {(I|O) | I ⊆ A ∧ I 6= ∅ ∧
O ⊆ A ∧ O 6= ∅} is the set of places. We call I the set of ingoing activities of a place
and O the set of outgoing activities.

Note that if p = (I|O), then •p = I and p• = O using standard notation.
A place is fitting if it can replay (parts of) the event log without missing or remaining

tokens. Otherwise, it is unfitting.

Definition 3 (Fitting and Unfitting Places, compare [20]). LetN = (A,P) be a Petri
net, let p = (I|O) ∈ P be a place, and let σ be a trace. With respect to the given trace
σ, p is called

– unfitting, denoted by �σ(p), if and only if ∃k ∈ {1, 2, ..., |σ|} such that
|{i | i ∈ {1, 2, ...k − 1} ∧ σ(i) ∈ I}| < |{i | i ∈ {1, 2, ...k} ∧ σ(i) ∈ O}| or
|{i | i ∈ {1, 2, ...|σ|} ∧ σ(i) ∈ I}| > |{i | i ∈ {1, 2, ...|σ|} ∧ σ(i) ∈ O}|,

– fitting, denoted by �σ(p), if and only if not �σ(p).

We extend these notions to the whole log using the noise parameter: with respect to a
log L and parameter τ ∈ [0, 1], p is called fitting, denoted by �τL(p), if and only if
|{σ ∈ L | �σ(p)}|/|L| ≥ τ , and unfitting otherwise.

Definition 4 (Behavior of a Petri net). We define the behavior of the Petri net (A,P)
to be the set of all fitting traces, that is {σ ∈ T | ∀p ∈ P : �σ(p)}.

Note that we only allow for behaviors of the form 〈I, a1, a2, . . . an,�〉 (Def. 1) such
that places are empty at the end of the trace and never have a negative number of tokens.

We are often interested in the traces of the event log which are replayable by certain
(sets of) places.

Definition 5 (Multisets of Fitting Traces). For an event log L and a place p, the mul-
tiset of log traces replayable by p is

fit(L, p) = [σ ∈ L | �σ(p)].

For an event log L and a Petri net N = (A,P ), the multiset of log traces replayable by
N is the intersection of all log traces replayable by the places in P , i.e.,

fit(L,N) = [σ ∈ L | ∀p ∈ P : �σ(p)] =
x

p∈P
fit(L, p).
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3 Introducing the eST-Miner

Several variants and extensions of the eST-Miner have been proposed in the past years.
In the following, we briefly introduce the eST-Miner variant used as the basis of this
work. For further details, we refer the reader to the respective papers.

As input, the algorithm takes a log L and a parameter τ ∈ [0, 1], and returns a
Petri net as output. A place is considered fitting, if it allows to replay at least a fraction
τ of traces in the event log. Inspired by language-based regions, the basic strategy of
the approach is to begin with a Petri net whose transitions correspond exactly to the
activities used in the given log. From the finite set of unmarked, intermediate places, the
subset of all fitting places is computed and inserted. To facilitate further computations
and human readability, implicit places are identified and removed [21–23]. A place is
implicit if its removal does not increase the behavior of the Petri net. Implicit places
can be detected based on the structure of the Petri net as proposed for the first eST-
Miner variant [19], or by using the faster replay-based implicit place removal strategy
introduced in [24]. The latter one is applied in the experimentation of this paper.

The algorithm uses token-based replay to evaluate the candidate places. To avoid
replaying the log on the exponential number of candidates (i.e., all pairs of subsets of
activities, (2|A|−1)2), it organizes the potential places as a set of trees, such that certain
properties hold. When traversing the trees, these properties allow to cut off subtrees, and
thus candidates, based on the replay result of their parent [19]. This greatly increases
efficiency, while still guaranteeing that all fitting places are found.

An example of such a tree-structured candidate space is shown in Fig. 2. Note the
incremental structure of the trees, i.e., the increase in distance from the roots corre-
sponds to the increase of input (red edges) and output (blue edges) activities. However,
the organization of candidates within the same depth and their connections to other
candidates is not fixed, but defined by the order of ingoing activities (>i) and outgoing
activities (>o).

Definition 6 (Complete Candidate Tree). Let A be a set of activities and let >i, >o
be two total orderings on this set of activities. A complete candidate tree is a pair
CT = (N,F ) with N = {(I|O) | I ⊆ A\{�} ∧O ⊆ A\{I} ∧ I 6= ∅ ∧O 6= ∅}.
We have that F = Fred ∪ Fblue, with

Fred ={((I1|O1), (I2|O2)) ∈ N ×N | |O2| = 1 ∧O1 = O2

∧ ∃a ∈ I1 :
(
I2 ∪ {a} = I1 ∧ ∀a′ ∈ I2 : a >i a′

)
} (red edges)

Fblue ={((I1|O1), (I2|O2)) ∈ N ×N | I1 = I2

∧ ∃a ∈ O1 :
(
O2 ∪ {a} = O1 ∧ ∀a′ ∈ O2 : a >o a

′)} (blue edges).

If ((I1|O1), (I2|O2)) ∈ F , we call the candidate (I1|O1) the child of its parent (I2|O2).

The purpose of the tree structured candidate space is to enable skipping of sets of unin-
teresting candidates to improve time and space efficiency. The runtime of the eST-Miner
strongly depends on the number of candidate places skipped during the search for fitting
places.

When a candidate place is evaluated to be fitting, i.e., it can replay a fraction of τ
traces in the event log, existing variants of the eST-Miner simply insert the place into
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(▶|a)  (▶|b)  (▶|■)  (a|a)  (a|b)  (a|■)  (b|a)  (b|b)  (b|■)
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(▶|a,b,■) (a|a,b,■) (b|a,b,■)    (▶,a|a,b) (▶,a|a,■) (▶,a|b,■)    (▶,b|a,b) (▶,b|a,■) (▶,b|b,■) (a,b|a,b) (a,b|a,■) (a,b|b,■)    (▶,a,b|a) (▶,a,b|b) (▶,a,b|■) 

(▶,a|a,b,■) (▶,b|a,b,■) (a,b|a,b,■) (▶,a,b|a,b) (▶,a,b|a,■) (▶,a,b|b,■)

       (▶,a,b|a,b,■)

Fig. 2. Example of a tree-structured candidate space for the set of activities {I, a, b,�}, with
orderings � >i b >i a >i I and � >o b >o a >o I.

ID Traces in L p1 p2 p3 p4 p5 p6 p7 p8 N
(I|a) (a|c) (a|b) (c|e) (b|e) (e|�) (b|c, d) (d, e|�)

1 I〈I, a, b, c, e,�〉60 X X X X X X X X X
2 I〈I, a, b, d,�〉20 X X X X X
3 I〈I, a, c, b, e,�〉15 X X X X X X X
4 I〈I, a, b, d, e,�〉5 X X X X X

a

b

c e

d

p1

p2

p3

p5

p4 p6

p8

p7

Fig. 3. The table indicates for each of the given trace variants and candidate places whether the
place can replay that trace variant. The Petri net N is created by inserting all places which can
replay at least 0.75 · |L| = 75 traces. However, N can replay only the first trace variant, i.e.,
0.6 · |L| = 60 traces.

the Petri net by connecting it to its uniquely labeled ingoing and outgoing transitions.
Consider the example event log and subset of candidate places in Fig. 3. Of the (in-
complete) subset of candidate places, the places p1 to p8 are fitting the event log for
τ = 0.75. Inserting these places results in the given Petri net N , which can replay
only the first trace variant corresponding to 60 % of traces. The introductory example
in Fig. 1 illustrates, that the fraction of replayable traces may even decrease to 0. Such
a result is undesirable, since it is unnecessarily complex with respect to the behavior
it represents, not free of dead parts and likely to disappoint user expectations with re-
spect to fitness. This work explores strategies of maintaining the fitness threshold τ as
a minimal fitness threshold of the returned, deadlock-free Petri net by inserting only a
selection of the discovered fitting places.
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1
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N2

N6

N4 N5

N3

N7

N8

set of places
forming N

replayable 
trace variants

fraction of 
replayable 

traces

Fig. 4. Consider the set of places given in Fig. 3. This figure shows all possible combinations of
these places such that adding any other place to the corresponding Petri net would decrease the
number of replayable log traces. Each set of places, i.e., Petri net, is annotated with the list of
trace variants it can replay and the corresponding fraction of log traces. Note, thatN8 corresponds
to the Petri net shown in Fig. 3.

4 Place Selection

Consider the set of all fitting places discovered for a certain noise threshold τ . The
selection of an adequate subset of these places, such that also the resulting Petri net can
replay a fraction of at least τ traces, is non-trivial for a variety of reasons. First of all,
the definition of an optimal solution is not straightforward. Several maximal subsets of
places satisfying this requirement may exist, which differ, for example, in size, fraction
of replayable traces, place complexity (number of connected activities) or subjective
’interestingness’ measures for the places retained. Fig. 4 illustrates all maximal sets
of places that can be built from the example places given in Fig. 3. These sets are
maximal in the sense that adding any of the other places would decrease the number of
replayable log traces. Depending on the choice of the minimal fitness threshold τ , the
optimal solution is not clear.

Furthermore, even if we have somehow obtained a notion of optimality, first col-
lecting all fitting places and then computing an optimal solution can quickly become
unfeasible, both in terms of time complexity and memory requirements. This is due
to the very large number of fitting but potentially implicit places discovered by the
eST-Miner. Unfortunately, knowledge of which places are contained in the Petri net is
required to identify implicit places reliably.

To circumvent the issue of time and space complexity, we combine the eST-Miners
sequential place evaluation procedure with a guided greedy place selection approach,
which is decsribed in detail in Subsections 4.1 and 4.2. In the absence of a clear no-
tion of optimality, we propose and investigate several heuristic selection strategies and
evaluate their impact on different quality aspects of the returned Petri net. In this paper,
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we consider fitness, precision, and simplicity as desirable properties (for details com-
pare [25,26]). While generality is desirable, additional information would be required
to evaluate it, which is why we consider it outside the scope of this work.

Our fitness evaluation of the returned Petri netN uses the standard alignment-based
fitness as defined in [27]. For precision, we use the approach as implemented in [28].
Simplicity is harder to evaluate, since it is a rather subjective metric that can be in-
fluenced by a variety of features. In this paper, we simplify the notion to express the
fraction of net elements that are transitions, arguing that a Petri net with relatively few
places is likely to be perceived as simple.

Definition 7 (Simplicity). Given a Petri net N = (A,P ), we define simplicity as the
fraction of nodes that are transitions, i.e.,

Simplicity(N) = 1− |P |
|P |+ |A|

.

All used quality metrics return values between 0 and 1, where a value close to 1
indicates high quality in general. However, note that for simplicity a value around 0.5
indicates a model with roughly as many places as transitions, for example a simple
sequence, while a higher value would arise from a Petri net with extremely few places.
Therefore, we consider a value close to 0.5 to be rather optimal in terms of simplicity.

4.1 Place Classification

When making the decision to insert a place into the model, this reduces the possible
choices we can make later on: the place constrains the behavior of the model and only
places with a sufficiently large intersection of replayable traces can be added to the
model at a later point. Consider the example place combinations in Fig. 4 with a fitness
threshold of τ = 0.75 and assume that the model already contains the places p1 and p3.
If the next fitting place we discover is p7, and we immediately insert it into the Petri
net, we can no longer discover a Petri net including, for example, p6, without violating
our global fitness constraint. Such choices may prevent us from discovering a more
desirable solution. Therefore, we aim to capture the main behavior of the log by using
heuristics to postpone, or even disallow, the addition of very restrictive places.

To this end, we introduce a new parameter δ which is our main tool to guide the
choice of places while balancing fitness, precision and simplicity. This δ specifies the
largest acceptable reduction in replayable traces when adding a place to the model.
Optionally, δ can be adapted for each place individually using an adaption function
adapt to favor certain places over others, according to the users preferences. Favored
places can be added earlier, despite being rather restrictive, while other places will be
added only if they do not constrain the behavior too much. Examples for such strategies
are presented in Sec. 5.

Definition 8 formalizes the use of τ , δ and adapt to decide for the discovered fitting
places, whether they should be added, kept for later re-evaluation or discarded.

Definition 8 (Place Classification Using τ, δ and adapt). Consider a set of activities
A, a set of places P ⊆ P(A)×P(A), a place p ∈ P(A)×P(A) and an event log L. We
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use parameters τ ∈ [0, 1] and δ ∈ [0, 1], and a function adapt : ([0, 1],P(A)×P(A))→
[0, 1] to categorize p as follows:

keepL,A,τ (P, p) = |fit(L(A,P )) ∩ fit(L, p)| ≥ τ · |L|
addL,A,τ,δ(P, p) = keepL,A,τ (P, p)

∧ |fit(L(A,P ))| − |fit(L, (A,P )) ∩ fit(L, p)| ≤ adapt(δ, p) · |L|

If keepL,A,τ (P, p) does not hold, p will be discarded.

In the following subsection, we give an overview of the complete approach.

4.2 Selection Framework

An overview of our approach, indicating inputs, outputs and use of parameters, is given
in Fig. 5. Since we consider simplicity to be a desirable property, we set the eST-Miner
to traverse the complete candidate tree using BFS rather than DFS. Thus, places with
few connected activities are evaluated first and can therefore be inserted into the model
at an earlier stage. Furthermore, we limit the traversal depth to places with dcut activi-
ties, arguing that places with many transitions are generally not desirable - such places
are usually devastating to simplicity while their constraints can be sufficiently approxi-
mated by much simpler places.

After the eST-Miner framework evaluates a candidate place p to be fitting with re-
spect to a fraction τ of traces (Def. 3), we use the classification functions given in Def. 8
to decide whether the place should immediately be added to the output Petri net, dis-
carded forever or kept for re-evaluation. In the latter case it is added to a queue Q of
potential places which is sorted according to how interesting a place is. In our case,
we sort by place simplicity (few transitions are better) and place fitness (number of re-
playable log traces). Optionally, the length ofQ can be limited, trading an improvement
in time and space complexity for potentially lowered model quality.

Whenever the BFS candidate traversal reaches a new level in the complete candi-
date tree, we revisit the potential places queue Q and re-evaluate its places using the
classification functions before proceeding with the traversal of more complex places.
This makes sense to promote simplicity in particular together with the delta adaption
functions proposed in Section 5, which give preference to places less complex than in-
dicated by the current tree level. After reaching the lowest tree level, the approach can
either terminate immediately, or iterate over the potential places queue while artificially
increasing the tree depth d+ times. This can be relevant for delta adaption functions
depending on place complexity, as exemplified in Sec. 5. Here, the artificial tree depth
allows for increased leniency also for the most complex places evaluated.

Finally, the resulting Petri net N may contain dead parts: in particular infrequent
activities with erratic behavior are likely to occur only in those traces that are no longer
replayable on N . Therefore, as a final step, we detect and remove all activities that do
not occur in fit(L,N) together with their connected arcs.

Before returning this Petri net as final output, the eST-Miner framework removes
implicit places, merges places that are equal except for self-loops, i.e., (I∪X1|O∪X1)
and (I ∪X2|O ∪X2) are merged into (I ∪X1∪X2|O ∪X1 ∪X2), and adds start and
end places.
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Algorithmic Framework

re-evaluate

keep (not add)

Parameters

traverse the complete 
candidate tree using BFS

(compare Def. 6)

Candidate Traversal

Place Selection

(compare Def. 3)

Candidate Evaluation

• Remove dead activities
• Merge self-loop places
• Remove implicit places

Post-processing

(compare Def. 8)

Place Classification

Q

N

Trigger 
revisiting 
of Q

add

P

Fig. 5. Overview of the presented approach, including input, output and parameter use.

The approach returns a Petri net N satisfying the following guarantees.

Theorem 1 (Guarantees). Given a set of activities A, event log L over A, an adap-
tion function adapt : ([0, 1],P(A) × P(A)) → [0, 1] and parameters τ ∈ [0, 1], δ ∈
[0, 1], s ∈ N, |Q| ∈ N, d+ ∈ N, dcut ∈ N, the presented approach computes a Petri net
N = (A′, P ) with A′ ⊆ A, such that N can replay at least τ · |L| traces from L and
every transition in A′ can be fired at least once.

Furthermore, if the length of Q is not limited, and thus a place p is discarded only if
it does not satisfy keepL,A,τ (P, p), the set of places P is maximal in the sense that
no place from the set of evaluated candidate places can be added without violating the
fitness constraints imposed by the chosen heuristics.

5 Selection Strategies

As illustrated by the example place combinations in Fig. 4, the order of places added
can have a significant impact on the selected subset of places and thus the behavior of
the returned Petri net. The presented framework allows for a wide range of heuristic
functions, optimizing the place selection individually towards a variety of possible user
interests. Thus, obviously, the examples presented in the following are by far not ex-
haustive and entirely different choices are possible, but they can serve as a starting point
to an investigation of the impact and suitability of our approach.

The linear and sigmoid delta adaption functions both aim to promote fitness and
simplicity. The constant and no delta delta adaption functions are introduced to be used
as a baseline in our experiments, towards which the effect of the other strategies can be
compared.

No Delta As a baseline to compare to, we introduce a function that ignores delta and
simply adds every fitting place to the Petri net as soon as it is discovered. Within the
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Fig. 6. Example behavior of the delta adaption modifiers modsigmoid(δ) (left) and modlinear(δ)
(right) for three places with 2, 3 and 4 activities, respectively. The x-axis indicates the current
tree depth d, with dmax = 12, while the y-axis indicates the modifier to be multiplied with δ.

framework, this can be formalized to

adaptnoDelta(δ, p) = 1.

Constant Delta Trivially, we can choose not to adapt delta at all. We simply add every
fitting, non-discarded place that does not reduce the replayable traces from the log by a
fraction of more than delta. Formally, this resembles the identity function:

adaptconstant(δ, p) = δ

Linear and Sigmoid Delta Adaption For a set of activities A, let dmax = 2|A| be
the maximum depth of the complete candidate tree, and let d ∈ [2, 3, ..., dmax] be the
current depth of the candidate tree traversal. We call s ∈ N\{0} the steepness modifier.
Consider a place p = (I|O).

The linear delta adaption function computes the adapted δ as follows:

adaptlinear(δ, (I|O)) = δ · modlinear((I|O))

= δ · s

(|I|+ |O|)
· d− (|I|+ |O|)

dmax − 2

We define the sigmoid delta adaption function as follows:

adaptsigmoid(δ, (I|O)) = δ · modsigmoid((I|O))

= δ ·

 2

1 + exp
(
(−1) · s

(|I|+|O|) · (d− (|I|+ |O|))
) − 1


Fig. 6 illustrates the behavior of the modifier each adaption function multiplies with

the parameter δ for three example places of varying complexity. Both, the linear and
sigmoid delta adaption are designed to prefer simple places. When a place originates
from the currently traversed level of the complete candidate tree, i.e., it is among the
most complex places currently available, both functions will evaluate to 0, meaning that
only a perfectly fitting place can be added. The simpler the evaluated place is compared
to the current tree level, the larger the result of the function and the more unfitting traces
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are allowed, with δ marking the maximal returnable value. The only difference is the
steepness of the functions: while the linear function increases linearly with the place
complexity, the sigmoid function grows fast in the beginning but stagnates towards the
end. Thus, the linear function becomes uniformly less lenient with increasing place
complexity. In contrast, the sigmoid function prefers the simpler places more strongly,
while the more complex places are (roughly) equally undesirable.

6 Experimental Results and Evaluation

We perform several introductory experiments where we run the proposed algorithm
with a wide variation of combinations of possible parameter settings on several event
logs with different properties. To investigate the impact of the proposed heuristics, we
use a lexicographical ordering of the activities, thus fixing the order of candidate eval-
uation.The purpose is to focus on the effect of the different parameters, and possibly
derive which of them are the most relevant for the discovery of certain models and
whether certain (combinations of) settings are preferable.

6.1 Experimental Setup

Table 1 provides an overview of the event logs used in our experimentation. Sepsis
has a relatively high number of different trace variants, all of which have comparable
frequencies with the most frequent trace making up only 3.33 % of the event log. Ac-
tivities are repeated often within a trace, which must lead to looping behavior within
a Petri net with uniquely labeled transitions. RTFM is rather large, with a moderate
variety of trace variants and activities. Both for variants and activities some are very
frequent while others are quite infrequent. Teleclaims is an established artificial log
useful for testing discovery of various control-flow structures. With Orders we can
demonstrate the algorithms ability to discover complex control flow structures, as well
as the option to abstract from rare behavior. For each event log we perform 4200 runs
of the algorithm with varying combinations of the different parameters, as specified in
Table 2. Note, that we keep the order of place candidate traversal fixed for all runs.

6.2 Results and Evaluation

For each model discovered we compute alignment-based fitness, precision and sim-
plicity as described in Sec. 4. Based on alignment-based fitness and precision, we also
present the F1-Score, i.e., the harmonic mean of alignment-based fitness and precision.

Table 1. List of logs used for the evaluation. The upper part lists real-life logs while the lower
part shows artificial logs. Logs are referred to by their abbreviations.

Log Name Abbreviation Activities Trace Variants Reference
Sepsis Sepsis 16 846 [29]
Road Traffic Fine Management RTFM 11 231 [30]
Teleclaims Teleclaims 11 12 [25]
Order-Handling Orders 8 9 [31]
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Table 2. Overview of the parameters settings used in our experimentation. The combinations
result in 4200 runs for each event log. The values ranges were chosen based on a smaller set
of preliminary experiments, aiming to investigate a wide range of parameter settings on the one
hand, while on the other hand avoiding unnecessary complexity resulting from variation without
notable impact. For example, for our inputs no places were discarded for |Q| ≥ 10000. For d+

we chose a very low and a very high value to evaluate whether it had any impact at all. Finally,
for the chosen event logs dcut = 5 has shown to be sufficient to find complex structures with the
standard eST-Miner, i.e., increasing the traversed tree depth increases computation time but has
no strong impact on model quality.

Parameter Used Values Purpose
τ 0.3, 0.4, 0.5, 0.6, 0.7,

0.8, 0.9
Defines the minimal fraction of log traces that every place,
as well as the final Petri net, must be able to replay.

δ 0.05, 0.1, 0.15, 0.2,
0.25

Used to define the allowed reduction in log traces re-
playable by N when adding a place.

adapt adaptnoDelta,
adaptconstant,
adaptlinear, adaptsigmoid

The delta adaption function used to guide the heuristics.

s 1, 2, 3, 4, 5 The steepness of the increase of the adaption function (rel-
evant for adaptlinear and adaptsigmoid only).

|Q| 100, 1000, 10000 The maximal number of places stored in Q.
d+ 0, 10 Artificial tree depth to re-evaluate places in Q after end of

tree traversal (relevant for adaptlinear and adaptsigmoid only).
dcut 5 Stop candidate traversal after the specified tree level.

In Fig. 7 an overview of the quality results of the 4200 models generated for each log
is given. Fitness and simplicity remain rather stable, with fitness being generally high
and simplicity values clustering around 0.5 (which we consider a good value, recall
Def. 7). On the other hand, precision, and by extension the F1-score, vary a lot for the
discovered models. This clearly indicates that the choice of parameters has a strong
impact on this quality aspect.

While we discovered only 7 unique models for Orders, there were 19 unique mod-
els found for RTFM, 27 for Teleclaims and 140 for Sepsis. The quality results and
frequencies of the 10 most frequently discovered Petri nets are given in Fig. 8 (Model
IDs 1 to 10). Additionally, we provide the same results for the models discovered by the
Inductive Miner infrequent (IMf) with default settings as implemented in ProM [32],
the models discovered by the eST-Miner with τ = 1.0 (comparable to region theory
results), as well as the model with the highest F1-Score discovered over all runs.

In Figures 9, 10, 11 and 12 we present a selection of models for each log: the model
discovered by IMf, the model discovered by the eST-Miner with τ = 1.0, the most
frequently discovered model and the model with the highest F1-score discovered by the
experiments with our proposed approach.

All models shown in Fig. 9 were discovered for the Orders log. For this rather
simple event log, all models achieve relatively high scores with respect to the quality
metrics. However, some notable differences in the expressed behavior can be observed
in particular with respect to the activities send invoice, send reminder, pay and cancel
order. According to the event log, in most cases execution of send invoice is eventually
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Fig. 7. Overview of model quality results for all 4200 runs with varying parameters but fixed
candidate traversal order.

followed either by pay (and then delivery) or by cancel order, but never both. In rare
cases, payment occurs before sending the invoice. After sending the invoice, reminders
can be sent repeatedly, until payment is received or the order is canceled. This behavior
is fully expressed only by the model discovered using the eST-Miner with τ = 1.0,
which is comparable to results produced by region-based approaches. Since payment
before sending the invoice is rare, users may prefer the other models which focus on
behavior where payment arrives after sending the invoice. The model discovered by
IMf further deviates from the log by not allowing for repeated reminders (occurring in
25 % of the traces), and enabling the cancellation of orders after payment. In contrast
to the model discovered most frequently by our extended eST-Miner, the model with
the highest F1-Score does not contain the activity cancel order (occurring in 13.03 %
of traces) at all, resulting in slightly lower fitness but notably increased precision.

The Sepsis event log exhibits many repetitions of activities and a comparatively
high control-flow variance, with 846 trace variants in 1050 traces, the most frequent
of which occurs only 35 times. Thus, the discovery of a model with simultaneously
high fitness and precision is challenging. Fig. 10 presents a selection of discovered
Petri nets. The IMf manages to discover groups of activities that occur in sequence,
however, within these groups the activities are in parallel and mostly skipable, resulting
a very low precision. The eST-Miner with τ = 1.0 illustrates a disadvantage of requiring
perfect fitness: the resulting model allows for nearly all possible behaviors. For the most
frequent model discovered by our extension, this problem becomes less severe and is
significantly reduced for the discovered model with the highest F1-Score. This model
manages to capture the main behavior hidden in the traces while ignoring infrequent
activity behavior, achieving comparatively high precision.
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Log Metric eST
(τ = 0.1) 1 2 3 4 5 6 7 8 9 10

F1 0.6432 0.6531 0.6763 0.9638 0.6794 0.9371 0.7570 0.8816 0.9270 0.8540 0.7792 0.6757
Fitness 0.9820 1.0000 0.9940 0.9301 0.9642 0.9642 0.9603 0.7882 0.8640 0.8707 0.9809 0.9642
Precision 0.4782 0.4849 0.5125 1.0000 0.5245 0.9114 0.6248 1.0000 1.0000 0.8379 0.6463 0.5201
Simplicity 0.5526 0.6842 0.5714 0.5000 0.5714 0.5333 0.5200 0.4667 0.5000 0.5000 0.5333 0.5333
Frequency - - 1271 1107 383 367 312 243 150 150 34 33
F1 0.3215 0.3266 0.4264 0.4639 0.5205 0.5752 0.6086 0.4849 0.4672 0.6893 0.6036 0.4582 0.7836
Fitness 0.9060 1.0000 0.9942 0.9846 0.9603 0.9681 0.9560 0.9679 0.9781 0.9230 0.9635 0.9942 0.9115
Precision 0.1954 0.1952 0.2714 0.3034 0.3570 0.4091 0.4464 0.3235 0.3069 0.5500 0.4395 0.2977 0.6871
Simplicity 0.5106 0.7826 0.6667 0.5926 0.5926 0.5909 0.5385 0.5806 0.6087 0.4516 0.6154 0.6522 0.52
Frequency - - 408 354 198 187 186 180 180 150 150 120 52
F1 0.9496 0.5993 0.9316 0.4697 0.3895 0.4536 0.6272 0.9469 0.9328 0.8621 0.8202 0.8825
Fitness 0.9490 1.0000 0.9538 1.0000 0.9889 0.9889 0.9733 0.9244 0.8740 0.9423 0.9572 0.8461
Precision 0.9503 0.4279 0.9105 0.3069 0.2425 0.2943 0.4627 0.9706 1.0000 0.7945 0.7175 0.9222
Simplicity 0.5172 0.5200 0.5000 0.5417 0.6190 0.5909 0.5200 0.5200 0.4815 0.5200 0.5000 0.4783
Frequency - - 650 507 474 440 374 356 210 182 182 150
F1 0.9340 0.9319 0.9258 0.9664 0.9502 0.9374 0.9319 0.9096 0.9296
Fitness 0.9600 1.0000 0.9996 0.9562 0.9279 0.8822 1.0000 0.9279 0.9562
Precision 0.9094 0.8725 0.8622 0.9768 0.9735 1.0000 0.8725 0.8921 0.9044
Simplicity 0.5000 0.4762 0.5000 0.4737 0.5000 0.4706 0.4762 0.4737 0.4500
Frequency - - 1472 1424 1000 225 64 11 4

highest 
F1

Model 2

Model 6

Model 2

RTFM (discovered 
19 unique models)

Sepsis (discovered 
140 unique 

models)

Teleclaims 
(discovered 27 
unique models)

Orders (discovered 
7 unique models)

Model IDIMf (default 
settings)

Fig. 8. Overview of the qualitative evaluation results of the IMf (default settings), the eST-Miner
with τ = 0 and the 10 most frequently discovered models by the presented approach including
their frequencies. The final column indicates the model with the best F1-Score (only for Sepsis
this is not contained in the most frequent models). A selection of models is presented for each
event log in Figures 9 to 12.

Inductive Miner infrequent (default settings):

eST-Miner (τ = 1.0):

Presented Approach (most frequent):

Presented Approach (highest F1):

Fig. 9. The Petri nets discovered based on the Orders log using the Inductive Miner infrequent
(default settings), the eST-Miner with τ = 1.0, and Model 1 (most frequent) and Model 2 (highest
F1-Score) discovered with our runs of the presented approach.

Fig. 11 shows Petri nets discovered from the RTFM log. Considering the models
discovered by IMf and eST-Miner with τ = 1.0, we observe the same general tenden-
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Inductive Miner infrequent (default settings):

eST-Miner (τ = 1.0):

Presented Approach (most frequent):

Presented Approach (highest F1):

Fig. 10. The Petri nets discovered based on the Sepsis log using the Inductive Miner infrequent
(default settings), the eST-Miner with τ = 1.0, and Model 1 (most frequent) and the model with
the highest F1-Score discovered with our runs of the presented approach.

cies as for the previous logs. For the models discovered by our approach, we note that
quite many activities are missing, meaning that they are not part of any replayable trace
from the event log. The reason can be found by investigation of this particular event log,
which describes two very distinct sub-processes, the more frequent of which consists of
the activities still contained in the model. The activities of the infrequent sub-process
related to the appeals have been filtered to focus on the main process.
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Inductive Miner infrequent (default settings):

eST-Miner (τ = 1.0):

Presented Approach (most frequent):

Presented Approach (highest F1):

Fig. 11. The Petri nets discovered based on the RTFM log using the Inductive Miner infrequent
(default settings), the eST-Miner with τ = 1.0, and Model 1 (most frequent) and Model 2 (highest
F1-Score) discovered with our runs of the presented approach.

A set of process models discovered from the Teleclaims log is presented in
Fig. 12. The models discovered by the IMf and our approach express similar behav-
ior, with the main difference being the representation of skipable activities: with all
transitions being uniquely labeled, our approach has to rely on loop constructs rather
than silent activities. The eST-Miner with τ = 1.0 does not abstract from infrequent
behavior, which in this case results in a perfectly fitting but quite complex model.

Our results indicate that even minor gains in fitness are usually accompanied by a
major drop in precision. The models with the best F1-Score are usually those with the
highest precision value. From Figures 9 to 12 we can observe that these models seem
to abstract well from infrequent activity behavior, giving a clear representation of the
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Inductive Miner infrequent (default settings):

eST-Miner (τ = 1.0):

Presented Approach (most frequent):

Presented Approach (highest F1):

Fig. 12. The Petri nets discovered based on the Teleclaims log using the Inductive Miner
infrequent (default settings), the eST-Miner with τ = 1.0, and Model 1 (most frequent) and
Model 6 (highest F1-Score) discovered with our runs of the presented approach.

main process. However, models with higher fitness may reveal complex control-flow
structures and interesting variations. The presented approach is able to return models
anywhere on this scale between fitness and precision based on the choice of parameters.

While the quality metrics clearly indicate that our approach is able to discover mod-
els balancing fitness and precision while maintaining reasonable simplicity, the choice
of parameters has a significant impact that requires further investigation. We used deci-
sion tree analysis to search for certain parameter settings that would result in the highest
quality models as indicated by the F1-Score. The results of this analysis are shown in
Table 3, where each line represents a set of parameter combinations that leads to the
discovery of the best model.

For the four event logs investigated in this paper, the most important parameters
seem to be τ and δ. This is not surprising, since τ has a direct impact on which places
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are available for addition to the Petri net and δ is limiting the range of the adaption
strategies, which include the use of s. Notably, the artificial tree depth d+ as well as
|Q| have had no major impact on the discovery of any of the examined models and the
sigmoid and linear delta adaption strategies are often interchangeable.

Some interdependencies between the parameters are expected, and seem to be con-
firmed by the results in Table 3. For example, when using the delta adaption functions
adaptconstant and adaptnoDelta, the steepness modifier s has no impact. For the Orders
log there is an indication of an exceptionally low s value working well with a high ar-
tificial tree depth modifier d+, and for low τ values requiring the use of δ to discover
the best model. For event logs like the RTFM log and the Orders log, which have a
few very dominant trace variants, we seem to generally achieve good results for rather
high values of τ . In contrast, for event logs with a high variety of traces as for example
Sepsis log, a low τ -value seems mandatory. Most likely, the large variety of fitting
places allows for obtaining high precision, while our heuristics seems to successfully
ensure the focus on the main behavior. However, more results are needed to validate
such speculations.

Interestingly, the results from the Sepsis log, which contains a high variety of
traces, seem to confirm our algorithms ability to discover the main behavior hidden
in an event log even in the absence of main trace variants: for a low value of τ , e.g.
τ = 0.3, the fraction of log traces replayable by the return Petri net is indeed close
to 0.3, however, the alignment-based fitness reliably remains above 0.9, indicating that
most of the traces are close to being replayable. We can conclude that the returned
model successfully expresses the core behavior of the process.

To summarize, the results clearly show that high quality models balancing the dif-
ferent quality aspects can be discovered. There is a significant variance in some of
the metrics, particularly precision, indicating that the settings of the algorithm have a
notable impact. Our preliminary investigation using decision trees shows, that certain
parameter choices result in high quality models. It gives a first indication about which
parameters have a more notable impact and whether certain settings are more suitable
for logs with certain properties. Further experimentation needs to be performed to inves-
tigate to which degree a generalization is possible. Note, that the impact of the candidate
traversal order has not been investigated yet, and may allow for further improvements.

7 Conclusion

In this paper, we introduced an extension to the eST-Miner that returns a Petri net which
satisfies user-definable minimal fitness requirements. The presented approach employs
heuristics to efficiently select a suitable subset of the discovered places, while aiming
towards high precision and simplicity. The algorithm is capable to discover complex
control-flow structures such as non-local dependencies, to deal with noise in the event
log and to provide guarantees without over- or underfitting.

Our first experiments, using four different event logs, clearly show that not only
is it possible to discover high-quality models using the introduced approach, but also
the heuristics applied have a significant impact on the obtained Petri net. Based on the
parameter settings, models with a very different focus with respect to fitness, precision
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Table 3. Overview of the parameter choices resulting in the discovery of the model with the
highest F1-Score. For each log we indicate how often this model has been discovered in our
experimental runs and in which figure to find it. For each parameter that our decision tree anal-
ysis has revealed to be impactful, the possible values are indicated. Each line corresponds to a
set of parameter combinations, with the frequency of the model being discovered using these
combinations given to the right.

Log and Model τ δ Strategy s d+ #Combinations
Sepsis (Fig. 10) 0.3 0.15 adaptconstant - - 30

(discovered 0.3 0.25 adaptsigmoid [3, 5] - 18

52 times)
RTFM (Fig. 11) [0.3, 0.6] [0.15, 0.25] adaptconstant - - 360

(discovered [0.4, 0.6] [0.2, 0.25] adaptsigmoid, adaptlinear [2, 5] - 288

1107 times) 0.6 - adaptnoDelta - - 150
[0.4, 0.6] 0.15 adaptlinear [3, 5] - 54

Teleclaims (Fig. 12) [0.3, 0.4] [0.15, 0.25] adaptconstant - - 180
(discovered [0.3, 0.4] [0.2, 0.25] adaptsigmoid [4, 5] - 48

356 times) [0.3, 0.4] 0.15 adaptlinear [3, 4] - 24
[0.3, 0.4] 0.25 adaptlinear [4, 5] - 24

Orders (Fig. 9) [0.7, 0.8] [0.15, 0.25] - [2,5] - 576
(discovered [0.3, 0.6] [0.15, 0.2] adaptsigmoid, adaptconstant [2,5] - 384

1424 times) [0.7, 0.8] - adaptnoDelta - - 120
[0.7, 0.8] [0.15, 0.25] - 1 10 72

and the handling of infrequent behavior can be discovered. Some parameters have a
stronger effect than others and some parameter choices seem to be more suitable for
logs with certain properties, which should be verified by further experimentation.

Next to an analysis of the running-time, future work includes further experimenta-
tion to explore the generalization the preliminary results, as well as the impact of the
candidate place traversal order and its interaction with the heuristics used. Improve-
ments or variations of the strategies are likely possible. It would be particularly inter-
esting to investigate to which degree the approach can be used to prioritize non-standard
quality aspects, for example related to user interests such as compliance or performance.

The dead transitions removed from the model because they are no longer part of the
replayable event log give rise to further possible extensions of the eST-Miner. When
detected early on, they can be used to identify and cut off candidate subtrees consisting
of dead places to improve the running time. Further investigation into the cause of their
removal my lead to better noise handling strategies to improve the quality of discov-
ered models. Finally, it would be interesting to investigate whether the presented place
selection strategies can be adapted to improve other algorithms as well.
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