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Abstract. Process mining techniques use event data to describe busi-
ness processes, where the provided insights are used for predicting pro-
cesses’ future states (Predictive Process Monitoring). Remaining Time
Prediction of process instances is an important task in the field of Pre-
dictive Process Monitoring (PPM). Existing approaches have two key
limitations in developing Remaining Time Prediction Models (RTM): (1)
The features used for predictions lack process context, and the created
models are black-boxes. (2) The process instances are considered to be
in isolation, despite the fact that process states, e.g., the number of run-
ning instances, influence the remaining time of a single process instance.
Recent approaches improve the quality of RTMs by utilizing process con-
text related to batching-at-end inter-case dynamics in the process, e.g.,
using the time to batching as a feature. We propose an approach that
decreases the previous approaches’ reliance on user knowledge for discov-
ering fine-grained process behavior. Furthermore, we enrich our RTMs
with the extracted features for multiple performance patterns (caused
by inter-case dynamics), which increases the interpretability of models.
We assess our proposed remaining time prediction method using two
real-world event logs. Incorporating the created inter-case features into
RTMs results in more accurate and interpretable predictions.

Keywords: process mining, predictive process monitoring, remaining
time prediction, inter-case dynamics behavior.

1 Introduction

Remaining time prediction approaches learn from historical process executions
and build prediction models for running process instances, i.e., cases, based on
the extracted features from the event data. Many approaches have been sug-
gested to solve the remaining time prediction problem [17]. However, most pro-
posed approaches have considerably high prediction errors. Based on [17], the
best performing model using an LSTM neural network [10] showed a prediction
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Fig. 1: Our proposed framework for inter-case-aware RTMs. Patterns are discovered after detecting
uncertain segments, i.e., segments causing high prediction errors due to inter-case dynamics. RTMs
are trained using the extracted features from the patterns within uncertain segments.

error of 178.4 days on average for the Road Traffic Management (RF) event
log [9]. These approaches also only consider control-flow-related aspects of pro-
cesses and individual case properties, i.e., intra-case properties, while making
predictions [12]. A process also has other dimensions associated with it [13].
For instance, specific rules determining scheduling and assignment of limited re-
sources, queuing mechanism, and decision logic in the process create inter-case
dependencies within the performance of process instances. Moreover, most of the
effort put into this research area has focused on applying new predictive model-
ing techniques, which create black-box prediction models. Considering inter-case
along with intra-case process features in RTMs increases the explainability, in-
terpretability, and accuracy of the prediction [8]. Therefore, we aim to improve
the quality of RTMs and introduce more interpretability in the predictions. The
accuracy of a RTM which is unaware of inter-case behavior is substantially im-
pacted if cases in a process segment, i.e., a pair of related activities, are processed
in a batch, First-In-First-Out (FIFO), or other patterns. The prediction accu-
racy decreases as a case passes through such segments indicating that RTM is
uncertain about the underlying process behavior in such segments. We call these
process segments uncertain segments. Therefore, recognizing all uncertain seg-
ments and translating their various inter-case patterns of process execution into
features for training RTMs increases prediction quality.

In this paper, we present a three-step approach for developing inter-case
dynamics aware RTMs: (1) Identifying process segments that cause high predic-
tion errors due to inter-case dynamics, i.e., uncertain segments. (2) Discovering
insights about the underlying patterns, e.g., batching, that leads to inter-case de-
pendencies within the detected segments. (3) Transforming derived insights into
features and incorporating them in RTMs to improve the quality of predictions.
For instance, the waiting time for the batching in a segment is transformed into
a feature and introduced into the RTM. We evaluate the prediction errors of
RTMs without incorporating inter-case dependencies, such as batching behavior
in a process segment, as shown in Figure 1, and identify uncertain segments that
involve inter-case dynamics. We continue by extracting the features associated
with the observed patterns in the uncertain segments.

We introduce preliminaries and the related work in Section 2. In Section 3,
we present our main approach. We evaluate the approach in Section 4 using real
event logs, and Section 5 concludes this work.

2 Preliminaries and Related Work

In this section, we introduce the necessary concepts and related work required
to understand the approach presented in this paper.
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2.1 Related Work

RTM approaches can be classified into three broad categories [17]. Process aware
approaches make predictions using explicit process model representations such as
transition system [1]. Process agnostic approaches typically use machine learning
(ML) methods [14] to make predictions. Recent process agnostic approaches
predominantly make use of sophisticated neural network architectures like LSTM
[16] and explainable AI methods [5] to develop RTMs. Hybrid approaches like [11]
combine capabilities of both categories by exploiting transition systems that are
annotated using a machine learning algorithm. However, most approaches across
all three categories only consider the intra-case perspective for predictions.

RTM approaches based on queuing models [15] and supervised learning [14]
utilized the inter-case dimension in predictions. They create features on the basis
of queuing theory like case priority and open cases of similar type. However,
these approaches assume FIFO queuing behavior throughout the entire process.
Two recent PPM approaches [3, 8] use performance spectra [2] to learn inter-
case dynamics present in the process without any prior assumption. Denisov et
al. [3] presented a novel approach to predict the aggregated performance of non-
isolated cases that utilize performance-related features. Klijn et al. [8] presented
a novel RTM approach that is aware of batching-at-end dynamics. In this paper,
we extend the process agnostic RTM approach presented in [8] by considering
inter-case dynamics caused by non-batching, batching-at-start patterns too. We
use and improve the fine-grained error analysis technique proposed in [8] to
identify inter-case dynamics by limiting manual intervention.

2.2 RTM Background

RTM approaches predict the remaining time to completion of an ongoing process
instance, i.e., case, based on process execution data of completed cases. Process
execution of a completed case is recorded as a non-empty sequence of events
(e), i.e., σ=〈e1, .., en〉 or trace. An event log L is a set of completed traces. Let
A, T , E be the universe of activities (event classifiers), timestamps and events.
Each event e∈E consists of mandatory and additional attributes. Let AN be the
set of attribute names. For an∈AN , we define #an(e) as the value of attribute
an for event e. An event e has mandatory attributes timestamp #t(e)∈T at
which e occurs and activity #act(e)∈A that occurs during e.

We first need to understand the general steps to develop a RTM described
in [17]. In the offline or training phase, the first step is to prepare the input
data, i.e., event log. Since a RTM makes prediction for incomplete traces, it
trains on prefixes extracted from traces in L. A prefix is extracted by tak-
ing the first k∈N events from a completed trace (σ=〈e1, .., en〉) using function
hdk(σ)=〈e1, .., ek〉, k ≤ n. The resulting prefixes are collectively known as a pre-
fix log L∗ of L. Therefore, data preparation includes cleaning the data, creating
a prefix log and feature engineering. Features like weekday or sojourn time are
extracted from event data and categorical features are encoded.

A RTM can be instantiated based on three main parameters, methods for
grouping similar prefixes into buckets, prefix encoding methods, and used predic-
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tion techniques. For instance, RTM=(p, a, x) represents that the model’s prefix
bucketing method is based on similar prefix lengths (p), the encoding method
is aggregating data of all prefix events (a), and ML algorithm is XGBoost (x).
After training, the models are tuned using techniques like hyperparameter op-
timization. Finally, the optimal model’s prediction accuracy is evaluated using
aggregated metrics, e.g., Mean Absolute Error (MAE).

2.3 Performance Spectrum with Error Progression

To identify process segments subject to high prediction errors due to inter-case
dynamics, Klijn et al. [8] introduced a visual analysis technique, Performance
Spectrum with Error Progression (PSwEP). It uses the performance spectrum
(PS) [2], which maps the performance of each case passing through a segment
over time. A process segment (a, b)∈A×A can be defined as any two successive
steps in the process, e.g., a step from activity a to activity b. For traces of form
〈..., ei, ei+1, ...〉, where #act(ei)=a,#t(ei)=ta,#act(ei+1)=b, and#t(ei+1)=tb, we
observe an occurrence of a segment (a, b) from time ta to tb. Each occurrence
of segment (a, b) representing a case is plotted in a PS as a line from (ta, a)
to (tb, b). In PSwEP, segment occurrences within a PS are classified based on
the error progression of the case while passing through the segment. Let P be
the set of predictions made on test data using RTM . Each prediction prk∈P
corresponds to a prediction made for prefix hdk(σ)=〈e1, .., ek〉 at point of pre-
diction #act(ek)=ak and tprk=#t(ek), i.e., the time moment of prediction.

Fig. 2: PswEP for (Add Penalty (AP), Send
for Credit Collection (SC)) in RF: error de-
crease (red), error increase (blue).

yprk and yprk denote the actual and
predicted outcomes of prk. To measure
the error progression of segment occur-
rence (ak, ak+1) linked to σ, the predic-
tion errors at ak and ak+1 are compared.
The difference in relative absolute errors
DRAE(raek, raek+1) = raek − raek+1

with raek=|yprk − yprk |/yprk is measured. If the prediction error decreases for
a segment occurrence, i.e., DRAE > 0 this plotted line is colored red in the
PSwEP. If the prediction error increases, i.e., DRAE < 0 the line is colored
blue. Figure 2 shows PSwEP of segment (Apply Penalty (AP), Send for Credit
Collection (SC)) in the RF event log.

3 Approach

In this section, we will discuss the main approach proposed to develop an inter-
case-dynamics-aware RTM. In Section 3.1, we discuss the proposed techniques to
automatically identify uncertain segments. In Section 3.2, we discuss the process
of identifying and deriving insights about inter-case dynamics. Finally, in Section
3.3, we propose ways to create inter-case features by utilizing derived insights.

3.1 Detecting Uncertain Segments

Measuring Uncertainty of a Process Segment To identify uncertain seg-
ments, we need to measure the uncertainty of each process segment. To do so, we
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Table 1: Error progression for the occurrence of segments
linked to predictions.
Case
ID

Prefix tprk yprk
yprk

rae Segment DRAE
Error

Progression
c1 〈a〉 1 6 10 0.667
c1 〈a, b〉 2 5 2 0.600 (a, b) 0.007 decrease
c1 〈a, b, c〉 4 3 2 0.333 (b, c) 0.267 decrease
c1 〈a, b, c, d〉 4 3 2 0.333 (c, d) 0 same
c1 〈a, b, c, d, e〉 7 0 0 ∞ (d, e) −∞ increase
c2 〈a〉 3 11 14 0.272
c2 〈a, b〉 5 9 14 0.555 (a, b) −0.283 increase
c2 〈a, b, c〉 14 2 3 0.500 (b, c) 0.055 decrease

Table 2: Measuring uncertainty of
each segment by aggregating its
occurrences to calculate observa-
tions, decrease cases, and increase
cases.

Segment Observations
Decrease
Cases

Increase
Cases

(a, b) 2 1 1
(b, c) 2 2 0
(c, d) 1 1 0
(d, e) 1 0 1

first measure the DRAE (Section 2.3) of individual segment occurrences linked
to predictions made using RTM on test data. Table 1 shows an example of how
individual predictions are aligned with segment occurrences and the error pro-
gression of each occurrence is classified. A decrease in error, i.e., DRAE > 0
for a case passing through segment (a, b) implies that after the occurrence of
activity b the remaining time prediction improves. This decrease could indicate
some uncertainty between activity a and b, which gets resolved after activity
b completes. An increase in error implies that after the occurrence of activity
b, the prediction model becomes more unsure about how the partial trace will
proceed. If prediction error remains the same, i.e., DRAE=0, there is no clear
indication of uncertainty within the process segment. We can either ignore such
rare cases or include them as error decrease, where we consider the latter.

Based on above insights, we use three aggregated metrics to quantify uncer-
tainty of segments. For each segment (S) linked to P, we measure (1) observa-
tions or total occurrences linked to S in P, (2) decrease cases or total occurrences
linked to S with DRAE ≥ 0, and (3) increase cases or total occurrences linked
to S with DRAE < 0. Table 2 is the result of applying the above aggregations
to occurrences of segments found in Table 1.

Selecting the Most Uncertain Segments We define a mapping function uS :
N×R −→ [0, 1] to select a subset of process segments for which inter-case features
could be created (Equation 1). The inputs are the number of observations (o) and
the ratio r = d/max(1, i) of decrease cases (d) to increase cases (i) for segment S
(as shown in Table 2). Output 1 indicates the segment is highly uncertain. Note
that ideal candidates for uncertain segments are those where decrease cases are
almost the same or more than increase cases, i.e., their ratio should be greater
than some threshold tr. The threshold for the number of observations (tobs)
indicates the occurrences of the segments. These thresholds can be set for each
process individually.

uS(o, r) =

{
1 if o ≥ tobs and round(r) ≥ tr
0 otherwise

(1)

Let SG be the set of all segments in a process and SGstart be the set of
starting segments. Therefore, we apply uS to S∈SG \ SGstart based on some tr
and tobs and select set of segments U for which uS(o, r)=1. Removing starting
activities in traces is due to the fact that the RTM has too little information,



6 M. Pourbafrani et al.

and the prediction error is likely to decrease when the second activity occurs.
We use the RF event log [9] as the running example. First, predictions are
made on the last 20% (temporally split) of the event log using a RTM, here
RTM=(p, a, x). Then, these predictions are used to measure the uncertainty of
each process segment and uS is applied to all non-starting segments. We set
tr=1 and tobs > µ, e.g., tobs=2 ∗ std where µ, std are the mean and standard
deviation of segment occurrences. The selected uncertain segments are (Send
Fine (SF), Insert Fine Notification (IF)), (Insert Fine Notification (IF), Add
Penalty (AP)) and (Add Penalty (AP), Send for Credit Collection (SC)). The
details of selecting the most uncertain segments presented here3.

3.2 Identifying Inter-Case Dynamics in Uncertain Segments

In order to diagnose causes for uncertainty within segments, first, we visualize
the performance of cases within the process segment using PSwEP (Section 2.3).
After that, the observed patterns in the performance spectrum are compared to
a taxonomy [2] to identify underlying process behavior that causes inter-case
patterns within the process segment. We explain the process of deriving insights
for the uncertain segments identified in the running example.

In the shown PSwEP of (SF, IF ) in Fig. 3 (left), two patterns, batching-
at-start and non-batching FIFO behavior are identified. These are elementary
patterns related to the order of case arrival. We notice uncertainty (as shown
by the red lines) for non-batched cases. Therefore, RTM is currently not aware
that non-batched cases are processed much faster than batch ones. Batched
cases within the segment (Fig. 3) are also classified using red. The uncertainty
concerning these cases is caused by the prediction model’s lack of awareness
about batching-at-start dynamics. The order of lines in PSwEP of (AP, SC)
presented before in Fig. 2 clearly shows that the inter-case pattern is caused
by batching-at-end. The prediction model is currently unaware of this inter-case
dynamic within the process segment. In PSwEP of (IF, AP ) in Fig. 3 (right),
we observe a FIFO with a constant time pattern in the order of case arrival. The
performance of a case is strongly correlated to the previous case that passed
through the segment. We also know that there are two possible activities, Add
Penalty (AP) or Insert Date Appeal to Prefecture (ID), that can occur after
Insert Fine Notification (IF) and the time that cases wait within the segments is
significantly different. Therefore, incorrectly assuming the path of a case arrives
at IF impacts the remaining time prediction. We are able to predict the path
by observing the recent performance of cases in (IF, AP ) and (IF, ID) w.r.t.
inter-case dependencies. Lastly, across three segments, we observe changing the
density of lines indicating varying workloads.

Based on the above derived insights, we define the abbreviated inter-case pat-
tern(s) identified for segments (SF, IF ), (IF, AP ) and (AP, SC) as R1=non−
batching, batch(s), R2=non− batching and R3=batch(e) respectively.

3
https://www.pads.rwth-aachen.de/go/id/qcekn/lidx/1
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Error Progression for Send Fine-Insert Fine Notification Error Progression for Insert Fine Notification-Add penalty

Fig. 3: PSwEP for segments (Send Fine (SF), Insert Fine Notification (IF)) (left), and (Insert
Fine Notification (IF), Add Penalty (AP)) (right) in the RF event log.

Table 3: The created inter-case features for segment predictions (C={CS , CS1
, CS2

, CS3
}) and wait-

ing time (w) within uncertain segments for the RF event log.
Case ID Activity Timestamp ... CS CS1

CS2
CS3

w y
N71924 SF 09-17 08:00 ... 1 1 0 0 1154258.7 39229200.0
S120874 AP 05-09 08:00 ... 1 0 1 0 2808000.3 28080000.0
S86803 SF 11-03 09:00 ... 1 1 0 0 1212661.0 36115200.0
S57422 SC 01-10 09:00 ... 0 0 0 0 0.0 0.0
S70222 CF 09-29 08:00 ... 0 0 0 0 0.0 40438800.0

3.3 Inter-Case Feature Creation

As the running example shows, ignoring inter-case dynamics results in high pre-
diction errors for prefixes expected to pass through segment S∈U . Therefore,
we need to provide the RTM information about a prefix being subject to inter-
case pattern R detected in uncertain segment S prior to the occurrence of the
segment. We use these insights to develop inter-case features.

Section 
3.5

Training / Offline Phase Testing / Runtime Phase

retrain 
RTM

event log w. 
inter-case 
features

Section 
3.4

event log

event log

Fig. 4: The overview of feature creation process
for RF event log with uncertain segments S1,
S2 and S3.

Consider the running example with
three uncertain segments S1, S2, and S3

with inter-case pattern(s) R1, R2 and
R3, respectively, we define the following
inter-case features: (1) CS∈{0, 1}, to in-
dicate if a prefix passes through an un-
certain segment S∈U , (2) CS1

∈{0, 1}, to
indicate that the prefix passes through
S1 with inter-case pattern(s) R1, (3)
CS2∈{0, 1}, to indicate that prefix
passes through S2 with inter-case pat-
tern(s) R2, (4) CS3

∈{0, 1}, to indicate that prefix passes through S3 with inter-
case pattern(s) R3, and (5) w, to indicate the waiting time of the prefix in S∈U ,
as a result of inter-case pattern(s) R. As a result of the feature creation step
for the running example, Table 3 is generated showing inter-case features. These
features are used to train an inter-case-dynamics-aware RTM. Feature y is the
target feature, i.e., remaining time to completion.

Creating inter-case features for an ongoing case at run-time requires its own
prediction models. We need a model (NS) to predict inter-case features related
to segment prediction and waiting time prediction model (TMS,R) for each un-
certain segment S∈U with inter-case pattern(s) R. Figure 4 gives an overview of
the steps involved in creating the models (offline) and utilization of these models
to create inter-case features (at run-time). This process is the extended version
of the presented feature-creation in [8].

3.4 Predicting the Next Segment

Classifier NS should determine if a prefix passes through segment S∈U at the
point of prediction. To build NS, we build a classifier for the next activity
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prediction using [18] and modify the outcome to predict the value of segment
prediction inter-case features. Let hdk(σ) be the input prefix with last activity
a for NS. If the next activity predicted is b, we say that the prefix passes
through segment (a, b) at the point of prediction. If (a, b)∈U , then CS=1, else
we set it to 0. If CS=1, we set the value of the boolean variable representing
the prefix passing through segment (a, b) as 1. Therefore, if predicted (a, b)=S1,
then CS1

=1, CS2
=0, and CS3

=0. The collective set of predicted features using
NS is called C.

3.5 Predicting Waiting Time

Fig. 5: Illustration of a single instance for
TMS,R to learn waiting time for case c1 using
performance-related features extracted from Sh

and relevant individual properties of c1.

In this section, we present general
steps to create a waiting time pre-
diction model (TMS,R) that predicts
how long a case stays in a segment
S with inter-case patterns R. Con-
sider a case c1 arriving at segment
S=(a, b) at time ta (Fig 5). Because of
inter-case dynamics, the waiting time
w of c1 will depend on the perfor-
mance of other cases in relevant seg-
ments in some recent time interval, i.e.,
historic spectrum (Sh) [3] and relevant individual properties (intra-case fea-
tures). The intra-case feature of c1 and performance seen within Sh can be
encoded as feature vector X1..Xn using insights gained about R within S.
This allows us to formulate the waiting time prediction problem as a supervised
learning problem: w=f(X1..Xn) + ε, where function f predicts w from X1..Xn.
To learn f , we create training samples using the sliding window method and
apply a ML method like LightGBM [6] that tries to minimize prediction error
ε. Table 4 shows sample data used to train a TMS,R for (IF, AP).

Table 4: Sample data for training waiting
time prediction model (TMS,R) for uncertain
segment (IF,AP ) with pattern R=non −
batching.

starting
cases

ending
cases

pending
cases

wl w

60 37 60 5183000.0 5184000.0
14 10 14 5184000.0 5184000.0
19 17 18 5187000.0 5187000.0

Waiting Time Prediction for Non-
batching Dynamics In Section 3.1, we
learned that w of a case in (IF,AP ) is in-
fluenced by R=non− batching and vary-
ing workload in segments (IF,AP ) and
(IF,AD). To derive workload related con-
text, we define h in Sh as the period be-
tween arrival of c1 and the last case before
it and derive: (1) starting cases or the number of cases that started (arrived at
the segment) in period h, (2) ending cases or the number of cases that com-
pleted (exited the segment) in period h and (3) pending cases or the number of
cases that have started within period h and will complete in the future. Since,
performance of a case in (IF,AP ) strongly depends on the previous case, we
also extract last waiting time (wl), e.g., Table 4.
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Waiting Time Prediction for Batching-at-Start Dynamics w of a case
c1 arriving at (SF, IF) will depend on R=batch(s), non− batching and varying
workload within the segment. Therefore, Sh contains only segment (SF, IF). To
learn performance related to R=non − batching and the workload, we include
features presented in Section 3.5. To include features related to R=batch(s), we
extract features related to the previous batch [7] with batching moment BMl:
(1) least (wmin) and longest waiting time (wmax) in previous batch, (2) previous
batch size and batch size percentile, (3) mean and standard deviation of IBCT
or inter batch case completion time, which is the time difference between the
completion times of two successive cases in the batch and (4) batch type, which
distinguishes batches with less than 2 observations that behave like simultaneous
batches, and (5) CIA or case inter-arrival time which the time between arrival
of c1 and the case before it. We also include relevant intra-case features resource,
expense, points and weekday, month, hour of previous batch. Duration or the
waiting time of the case in the previous segment is also included to distinguish
batched and non-batched cases. However, learning case-specific w is difficult
because batching-at-start cases proceed randomly, i.e., not in the order they
arrived at the batch. To avoid learning this random behavior, we propose building
a TMS,R that predicts the average of expected waiting times for all cases that
arrive along with c1. Hence, the training data will be prepared by extracting the
above-mentioned features and then aggregating (calculating mean) feature values
for instances that correspond to cases arriving simultaneously in the segment.

Waiting Time Prediction for Batching-at-End Dynamics (AP,SC) con-
tains inter-case dynamics caused by R=batch(e) and varying workload. To con-
sider the varying workload across the segment, we include the features presented
in Section 3.5. To learn batching related performance, we extract features wmin,
wmax and CIA described in previous section. Additionally, we include: (1) tlb: or
the time elapsed since the occurrence of the last batch, (2): the mean and stan-
dard deviation of IBIA (inter-case arrival rate) which is the difference between
the arrival times of two successive cases in the batch. We also include intra-case
features month and weekday.

4 Evaluation

4.1 Experimental Setup

We evaluate the proposed approach on two real-life event logs: the RF event
log [9] and BPIC’20 event log [4]. We implemented inter-case feature creation and
PSwEP in Python, which is publicly available4. To train and test RTMs, we use
the benchmark implementation for RTM approaches5 [17]. First, we make predic-
tions with RTM=(p, a, x) for both event logs to identify uncertain segments and
their patterns. The uncertain segments identified from RF event log are (SF, IF),
(IF, AP) and (AP, SC) with inter-case pattern(s) R1=non−batching, batch(s),

4
https://github.com/karshreya98/Inter_case_aware_RTM

5
https://github.com/verenich/time-prediction-benchmark

https://github.com/karshreya98/Inter_case_aware_RTM
https://github.com/verenich/time-prediction-benchmark
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Table 5: Weighted average MAE (in days) of different RTM models with different bucketing, encoding
and ML methods, e.g., (p, a, x), while using no inter-case features I(∅) and with the created inter-case

features using segment predictions I(C, w).

(p, a, x) (p, l, x) (c, a, x) (c, l, x) (p, l, r) (c, a, r) (c, l, r) (s, l, x)
RF I(∅) 212.60 209.69 210.32 208.59 221.39 221.05 221.53 203.29

I(C, w) 187.65 179.78 201.17 179.34 191.06 205.87 190.63 179.78
BPIC’20 I(∅) 3.68 3.66 3.87 3.62 3.85 3.90 3.72 3.66

I(C, w) 3.58 3.57 3.81 3.53 3.69 3.70 3.65 3.48

R2=non− batching and R3=batch(e), respectively. The two identified uncertain
segments from BPIC’20 event log are (Declaration Final Approved by Admin-
istration (DF), Request Payment (RP)) and (Request Payment (RP), Payment
Handled (PH)). The inter-case pattern(s) identified for segments (DF, RP) and
(RP, PH) are R1=non− batching, batch(s), and R2=batch(e) respectively. To
create inter-case features, we implement NS using [18] and follow steps described
in Section 3.5 to create TMS,R models using LightGBM [6]. Predictions are made
with different bucketing prefixes, encoding prefix events, and ML methods. We
consider prefix bucketing methods to be grouping by prefix lengths (p), using a
clustering algorithm (c) or grouping all prefixes in a single bucket (s). Common
prefix encoding methods include data of only last prefix event (l) or aggregating
data of all prefix events (a), and apply ML models, XGBoost (x) or random forest
(r) to the input encoded feature vectors. The following input configurations are
used: (1) I(∅): event log with no inter-case features, (2) I(C, w): event log with
inter-case features created using actual segment prediction C, and (3) I(C, w):
event log with inter-case features created using segment prediction made using
NS. We use 80% and 20% (by temporally splitting) of the event logs for training
and testing the RTMs. To measure overall prediction accuracy, we measure the
weighted average MAE [17] of all predictions P made on test data.

4.2 Results

Table 6: MAE (in days) for different configurations (I) with
the similar lengths bucketing (p), aggregating events data
for encoding prefix events (a), and XGBoost (x) as the ML
method, RTM = (p, a, x). Pk is the set of all predictions for
prefixes of length k.

RF I(∅) I(C, w) I(C, w) BPIC’20 I(∅) I(C, w) I(C, w)
Pk=2 176.37 107.85 106.74 Pk=3 4.03 3.84 4.06
Pk=3 227.38 189.22 200.02 Pk=4 2.64 2.22 2.23
Pk=4 202.92 123.19 171.11 Pk=5 1.07 0.98 0.97

Table 5 shows that using
inter-case features leads to an
increase in performance for
all 8 combinations of bucket-
ing prefixes, encoding prefix
events, and ML methods in
RTMs against baseline I(∅).
For the RF event log, we see that prediction error decreases by a maximum
of 14.26% and a minimum of 4.27% for methods (p, l, x) and (c, a, x), respec-
tively, with I(C, w). For the BPIC’20 event log, we observe a maximum de-
crease of 5.12% and a minimum decrease of 1.55% in weighted average MAE
for methods (c, a, r) and (c, a, x), respectively. Since BPIC’20 is a smaller event
log with fewer cases subject to the identified inter-case patterns, the overall re-
duction in prediction error is smaller. The most accurate predictions for the
RF event log obtained using I(C, w) with (c, l, x), has a MAE 0.6 days less
than the benchmark result [17]. However, our approach’s privilege is that these
predictions can be interpreted more easily because of the inter-case features.
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Fig. 6: Comparing prediction results for RF
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Fig. 7: Comparing prediction results for BPIC’20

In our approach, inter-case fea-
tures are primarily included for pre-
fixes passing through uncertain seg-
ments which occur at some step k
of the process. Therefore, we look at
MAE of predictions made for all pre-
fixes of relevant length k, i.e., Pk ⊆ P.
Segments (SF, IF ), (IF, AP ) and
(AP, SC) of the RF event log occur
predominantly at step k = 2, k = 3
and k = 4 of the process respectively.
Segments (DF, RP ) and (RP, PH)
of the BPIC’20 log occur predominantly at steps k = 3 and k = 4, 5 respectively.
Table 6 shows us the results for predictions made using RTM = (p, a, x). For the
RF event log, the prediction error decreases by 39%, 12% and 15% for P2, P3

and P4, respectively using I(C, w) over baseline. For BPIC’20, error decreases
up to 15% and 9% for P4 and P5, respectively, when using I(C, w). However, the
MAE of P3 is slightly higher for configuration I(C, w) compared to I(∅) . This
is because of incorrect segment predictions for (DF, RP) made by NS which is
proven by the results of I(C, w). Figures 6 and 7 compare the batching-at-end
aware predictions made using inter-case features created in our approach that
uses LightGBM [6]) and previous approach [8] that uses exponential smoothing
(ES). We measure the increase/decrease in performance of P4 made using dif-
ferent combination of RTMs over their respective baselines. We compare only
predictions at k=4 for both logs where uncertain segments with batching-at-end
dynamics occur. Figure 6 shows that, our approach performs better than pre-
vious approach in 5 of the 8 input configuration (I) for batched cases in RF
event log. Figure 7 shows that for the batched cases in BPIC’20 log, our method
performs better for all the configurations.

5 Conclusion

We presented an approach to systematically discover a subset of uncertain pro-
cess segments with inter-case dynamics that cause high prediction errors. Con-
trary to previous approaches, our designed function for detecting the subset
of uncertain segments, limited the manual intervention to the identification of
inter-case patterns within these segments. Using visual analysis, we identified and
gained insights about inter-case pattern(s) within uncertain segments. In partic-
ular, we gained insights into non-batching (FIFO and unordered), batching-at-
start, and batching-at-end inter-case patterns. Subsequently, we included these
insights in remaining time predictions by transforming them into the inter-case
features. For instance, there is a maximum increase in overall prediction per-
formance by 14.2% for RF event-log. Since there is no standardized process to
create a ML model for inter-case feature creation, our proposed approach is also
sensitive to user interpretation. Yet, it provides more interpretability to RTMs.
Note that despite an overall decrease in prediction error, some prefixes were heav-
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ily over-predicted or under-predicted. Therefore, the next step is to improve the
prediction models and leverage routing probability derived from stochastic pro-
cess models. It improves the inter-case feature creation for segment prediction.
Another possible path is to make RTM aware of non-case-related aspects, e.g.,
resources dependencies.
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