
Privacy-Preserving Data Publishing in Process
Mining

Majid Rafiei[0000−0001−7161−6927] and Wil M.P. van der
Aalst[0000−0002−0955−6940]

Chair of Process and Data Science, RWTH Aachen University, Aachen, Germany

Abstract. Process mining aims to provide insights into the actual pro-
cesses based on event data. These data are often recorded by information
systems and are widely available. However, they often contain sensitive
private information that should be analyzed responsibly. Therefore, pri-
vacy issues in process mining are recently receiving more attention. Pri-
vacy preservation techniques obviously need to modify the original data,
yet, at the same time, they are supposed to preserve the data utility.
Privacy-preserving transformations of the data may lead to incorrect or
misleading analysis results. Hence, new infrastructures need to be de-
signed for publishing the privacy-aware event data whose aim is to pro-
vide metadata regarding the privacy-related transformations on event
data without revealing details of privacy preservation techniques or the
protected information. In this paper, we provide formal definitions for
the main anonymization operations, used by privacy models in process
mining. These are used to create an infrastructure for recording the pri-
vacy metadata. We advocate the proposed privacy metadata in practice
by designing a privacy extension for the XES standard and a general data
structure for event data which are not in the form of standard event logs.

Keywords: Responsible process mining · Privacy preservation · Privacy
metadata · Process mining · Event logs

1 Introduction

No one doubts that data are extremely important for people and organizations
and their importance is growing. Hence, the interest in data science is rapidly
growing. Of particular interest are the so-called event data used by the process
mining techniques to analyze end-to-end processes. Process mining bridges the
gap between traditional model-based process analysis, e.g., simulation, and data-
enteric analysis, e.g., data mining. It provides fact-based insights into the actual
processes using event logs [1]. The three basic types of process mining are: process
discovery, conformance checking, and enhancement [1].

An event log is a collection of events, and each event is described by its
attributes. The main attributes required for process mining are case id, activity,
timestamp, and resource. Table 1 shows an event log recorded by an information
system in a hospital, where ⊥ indicates that the corresponding attribute was not
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recorded. Some of the event attributes may refer to individuals. For example,
in the health-care context, the case id may refer to the patients whose data are
recorded, and the resource may refer to the employees performing activities for
the patients, e.g., nurses or surgeons. When the individuals’ data are explicitly
or implicitly included, privacy issues arise. According to regulations such as the
European General Data Protection Regulation (GDPR) [25], organizations are
compelled to consider the privacy of individuals while analyzing their data.

The privacy and confidentiality issues in process mining are recently receiv-
ing more attention [22,20,9,14]. The proposed methods cover a range of solutions
from privacy/confidentiality frameworks to privacy guarantees. Privacy preser-
vation techniques often apply some anonymization operations to modify the data
in order to fulfill desired privacy requirements, yet, at the same time, they are
supposed to preserve the data utility. The transformed event log may only be
suitable for specific analyses. For example, in [20], the privacy requirement is to
discover social networks of the individuals (resources) involved in a process with-
out revealing their activities, and the resulting event log is only suitable for the
social network discovery. Moreover, the original event log may be transformed to
another form of event data which does not have the structure of a standard event
log. For example, in [22], the privacy requirement is to discover processes without
revealing the sequence of activities performed for the individuals (cases), where
the transformed event data are not in the form of event logs and contain only di-
rectly follows relations between activities, which is merely suitable for the process
discovery. Therefore, the modifications made by privacy preservation techniques
need to be reflected in the transformed event data to inform the data analysts.

In this paper, for the first time, we formalize the main anonymization op-
erations on the event logs and exploit them as the basis of an infrastructure
for proposing privacy metadata, we also design a privacy extension for the XES
standard and a general data structure to cope with the event data generated by
some privacy preservation techniques which are not in the form of an event log.
The proposed metadata, along with the provided tools support, supply privacy-
aware event data publishing while avoiding inappropriate or incorrect analyses.

The remainder of the paper is organized as follows. In Section 2, we explain
the motivation of this research. Section 3 outlines related work. In Section 4,
formal models for event logs are presented. We explain the privacy-preserving
data publishing in process mining in Section 5, where we formalize the main
anonymization operations, privacy metadata are proposed, and the tools support
is presented. Section 6 concludes the paper.

2 Motivation

Compare Table 2 with Table 1, they both look like an original event log con-
taining all the main attributes to apply process mining techniques. However,
Table 2 is derived from Table 1 by randomly substituting some activities (f
was substituted with g and k), generalizing the timestamps (the timestamps
got generalized to the minutes level), and suppressing some resources (B1 was
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Table 1: An event log (each row represents an
event).
Case Id Act. Timestamp Res. Age Disease

1 a 01.01.2019-08:30:10 E1 22 Flu
1 b 01.01.2019-08:45:00 D1 22 Flu
2 a 01.01.2019-08:46:15 E1 30 Infection
3 a 01.01.2019-08:50:01 E1 32 Infection
4 a 01.01.2019-08:55:00 ⊥ 29 Poisoning
1 e 01.01.2019-08:58:15 E2 22 Flu
4 b 01.01.2019-09:10:00 D2 29 Poisoning
4 r 01.01.2019-09:30:00 B1 29 Poisoning
2 d 01.01.2019-09:46:00 E3 30 Infection
3 d 01.01.2019-10:00:25 E3 32 Infection
2 f 01.01.2019-10:00:05 N1 30 Infection
3 f 01.01.2019-10:15:22 N1 32 Infection
4 e 01.01.2019-10:30:35 E2 29 Poisoning
2 f 01.02.2019-08:00:45 N1 30 Infection
2 b 01.02.2019-10:00:00 D2 30 Infection
3 b 01.02.2019-10:15:30 D1 32 Infection
2 e 01.02.2019-14:00:00 E2 30 Infection
3 e 01.02.2019-14:15:00 E2 32 Infection

Table 2: An anonymized event log (each row rep-
resents an event).
Case Id Act. Timestamp Res. Age Disease

1 a 01.01.2019-08:30:00 E1 22 Flu
1 b 01.01.2019-08:45:00 D1 22 Flu
2 a 01.01.2019-08:46:00 E1 30 Infection
3 a 01.01.2019-08:50:00 E1 32 Infection
4 a 01.01.2019-08:55:00 ⊥ 29 Poisoning
1 e 01.01.2019-08:58:00 E2 22 Flu
4 b 01.01.2019-09:10:00 D2 29 Poisoning
4 r 01.01.2019-09:30:00 ⊥ 29 Poisoning
2 d 01.01.2019-09:46:00 E3 30 Infection
3 d 01.01.2019-10:00:00 E3 32 Infection
2 g 01.01.2019-10:00:00 N1 30 Infection
3 g 01.01.2019-10:15:00 N1 32 Infection
4 e 01.01.2019-10:30:00 E2 29 Poisoning
2 k 01.02.2019-08:00:00 N1 30 Infection
2 b 01.02.2019-10:00:00 D2 30 Infection
3 b 01.02.2019-10:15:00 D1 32 Infection
2 e 01.02.2019-14:00:00 E2 30 Infection
3 e 01.02.2019-14:15:00 E2 32 Infection

suppressed). Hence, a performance analysis based on Table 2 may not be as
accurate as the original event log, the process model discovered from Table 2
contains some fake activities, and the social network of resources is incomplete.
The main motivation of this research is to provide concrete privacy metadata for
process mining without exposing details of privacy/confidentiality techniques or
the protected sensitive information so that the analysts are aware of the changes
and avoid inappropriate analyses.

Process mining benefits from a well-developed theoretical and practical foun-
dation letting us perform this research. In theory, event logs, as the input data
types, have a concrete structure by the definition. In practice, the IEEE Stan-
dard for eXtensible Event Stream (XES)1 is defined as a grammar for a tag-based
language whose aim is to provide a unified and extensible methodology for cap-
turing systems behaviors by means of event logs, e.g., Figure 1 shows the first
case of the event log Table 1 in the XES format. In this paper, the XES standard
will be used to show the concrete relation between the theory and practice, but
the concepts are general.

3 Related Work

In process mining, the research field of confidentiality and privacy received rather
little attention, although the Process Mining Manifesto [4] already pointed out
the importance of privacy. In [2], Responsible Process Mining (RPM) is intro-
duced as the sub-discipline focusing on possible negative side-effects of applying
process mining. In [15], the aim is to provide an overview of privacy challenges
in process mining in human-centered industrial environments. In [7], a possible
approach toward a solution, allowing the outsourcing of process mining while en-
suring the confidentiality of dataset and processes, has been presented. In [16],
the authors propose a privacy-preserving system design for process mining, where
a user-centered view is considered to track personal data. In [22,23], a frame-
work is introduced, which provides a generic scheme for confidentiality in process

1
http://www.xes-standard.org/
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Fig. 1: The XES format for the event log Table 1, showing only the first case (trace). In XES,
the log contains traces and each trace contains events. The log, traces, and events have attributes,
and extensions may define new attributes. The log declares the extensions used in it. The global
attributes are the ones that are declared to be mandatory with a default value. The classifiers assign
identity to each event, which makes it comparable to the other events.

mining. In [20], the aim is to provide a privacy-preserving method for discover-
ing roles from event data, which can also be exploited for generalizing resources
as individuals in event logs. In [13], the authors consider a cross-organizational
process discovery context, where public process model fragments are shared as
safe intermediates. In [9], the authors apply k-anonymity and t-closeness [12] on
event data to preserve the privacy of resources. In [14], the authors employ the
notion of differential privacy [8] to preserve the privacy of cases in event logs. In
[21], an efficient algorithm is introduced applying k-anonymity and confidence
bounding to preserve the privacy of cases in event logs.

Most related to our work are [19] and [18] which are focused on healthcare
event data. In [19], the authors analyze data privacy and utility requirements for
healthcare event data and the suitability of privacy preservation techniques is
assessed. In [18], the authors extend their previous research ([19]) to demonstrate
the effect of applying some anonymization operations on various process mining
results, privacy metadata are advocated, and a privacy extension for the XES
standard is proposed. However, formal models, possible risks, the tools support,
and the event data which are not in the form of event logs are not discussed.
In this paper, we provide a comprehensive infrastructure for recording privacy
metadata which considers possible risks for data leakage, and the data utility.
Our infrastructure is enriched by the formal models in theory and the tools
support in practice.
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4 Preliminaries

In this section, we provide formal definitions for event logs used in the remainder.
Let A be a set. A∗ is the set of all finite sequences over A, and B(A) is the set
of all multisets over the set A. A finite sequence over A of length n is a mapping
σ ∈ {1, ..., n} → A, represented as σ = 〈a1, a2, ..., an〉 where σi = ai = σ(i) for
any 1 ≤ i ≤ n, and |σ|= n. a ∈ σ ⇔ a = ai for 1 ≤ i ≤ n. For σ ∈ A∗, {a ∈ σ}
is the set of elements in σ, and [a ∈ σ] is the multiset of elements in σ, e.g.,
[a ∈ 〈x, y, z, x, y〉] = [x2, y2, z]. σ ↓X is the projection of σ onto some subset
X ⊆ A, e.g., 〈a, b, c〉 ↓{a,c}= 〈a, c〉. σ · σ′ appends sequence σ′ to σ resulting a
sequence of length |σ|+|σ′|.

Definition 1 (Event, Attribute). Let E be the event universe, i.e., the set of
all possible event identifiers. Events can be characterized by various attributes,
e.g., an event may have a timestamp and corresponds to an activity. Let Nevent be
the set of all possible event attribute names. For any e ∈ E and name n ∈ Nevent,
#n(e) is the value of attribute n for event e. For an event e, if e does not have
an attribute named n, then #n(e) = ⊥ (null).

We assume three standard explicit attributes for events: activity, time, and
resource. We denote Uact, Utime, and Ures as the universe of activities, times-
tamps, and resources, respectively. #act(e) ∈ Uact is the activity associated to
event e, #time(e) ∈ Utime is the timestamp of event e, and #res(e) ∈ Ures is the
resource associated to event e.

Definition 2 (Case, Trace). Let C be the case universe, i.e., the set of all
possible case identifiers, and Ncase be the set of case attribute names. For any
case c ∈ C and name n ∈ Ncase: #n(c) is the value of attribute n for case c. For
a case c, if c does not have an attribute named n, then #n(c) = ⊥ (null). Each
case has a mandatory attribute “trace” such that #trace(c) ∈ E∗. A trace σ is
a finite sequence of events such that each event appears at most once, i.e., for
1 ≤ i < j ≤ |σ|: σ(i) 6= σ(j).

Definition 3 (Event Log). Let U be a universe of values including a desig-
nated null value (⊥), and N = Nevent ∪ Ncase such that Nevent and Ncase are
disjoint. An event log is a tuple L = (C,E,N,#), in which; C ⊆ C is a set
of case identifiers, E ⊆ E is a set of event identifiers such that E = {e ∈ E |
∃c∈C e ∈ #trace(c)}, N ⊆ N is a set of attribute names such that N ∩ Nevent

are the event attributes, and N ∩ Ncase are the case attributes. For n ∈ N ,
#n ∈ (C ∪ E) → U is a function which retrieves the value of attribute n as-
signed to a case or an event (⊥ is used if an attribute is undefined for the given
case or event). In an event log, each event appears at most once in the entire
event log, i.e., for any c1, c2 ∈ C such that c1 6= c2 : {e ∈ #trace(c1)} ∩ {e ∈
#trace(c2)} = ∅. If an event log contains timestamps, then the ordering in a
trace should respect the timestamps, i.e., for any c ∈ C, i and j such that
1 ≤ i < j ≤ |#trace(c)|: #time(#trace(c)i) ≤ #time(#trace(c)j). We denote
UL as the universe of event logs.



6 Majid Rafiei and Wil M.P. vand der Aalst

5 Privacy-Preserving Data Publishing

Privacy-preserving data publishing is the process of changing the original data
before publishing such that the published data remain practically useful while
individual privacy is protected [10]. Note that the assumption is that the data
analysts (process miners) are not trusted and may attempt to identify sensitive
personal information. Various privacy models could be applied to the original
data to provide the desired privacy requirements before data publishing. How-
ever, the transformations applied should be known in order to interpret the data.
Therefore, we propose the privacy metadata in process mining based on the main
anonymization operations. We consider suppression (sup), addition (add), sub-
stitution (sub), condensation (con), swapping (swa), generalization (gen), and
cryptography (cry) as the main anonymization operation types in process min-
ing. In this section, we define these operations and demonstrate how the original
event log is modified by them.

5.1 Anonymization Operations

Anonymization operations are the main functions which modify the original
event log to provide the desired privacy requirements and may have any number
of parameters. Moreover, the operations can be applied at the case or event level,
and the target of the operation could be a case, an event, or attributes of such an
object. We define the anonymizer as a function which applies an anonymization
operation to an event log.

Definition 4 (Anonymizer). An anonymizer anon ∈ UL → UL is a function
mapping an event log into another one by applying an anonymization operation.

Definition 5 (Anonymizer Signature). Let OT = {sup, add, sub, con, swa,
gen, cry} be the set of operation types. A signature sign = (ot, level, target) ∈
OT×{case, event}×({case, event}∪N ) characterizes an anonymizer by its type,
the level (case or event), and the target (case, event, or case/event attribute).
We denote Usign as the universe of signatures.

Note that an anonymizer signature is not supposed to uniquely distinguish
the anonymization operations applied to an event log, i.e., the same type of
operation can be applied at the same level and to the same target multiple
times, but it is designated to reflect the type and the direct purpose of the cor-
responding operation. This is considered as the minimum information required
to make the analysts aware of the modifications w.r.t. the data utility and risks
for data leakage. We say the direct purpose due to the interdependency of cases
and events through traces, i.e., modifying cases may affect events and vice versa.
This is demonstrated by some of the examples in the following. We assume that
the only correlation between cases and events is the trace attribute of cases,
and all the other attributes are independent. Certainly, the operations can be
more accurately characterized by adding more information to the correspond-
ing signatures, but this may lead to the data leakage in the sense of revealing
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the protected information or details of the anonymization operation which is
orthogonal to the ultimate goal of privacy preservation. In the following, we
demonstrate the anonymization operations using some examples.

Suppression replaces some values, specified by the target of the operation
and probably some conditions, with a special value, e.g., null value. The reverse
operation of suppression is called disclosure. The group-based privacy models
such as k-anonymity and its extensions [12] often utilize suppression. In the
following, we provide three examples to demonstrate the effect of suppression
on an event log. In [9], a group-based privacy model is proposed for discovering
processes while preserving privacy.

Example 1 (Event-event suppression based on the activity attribute)
Let L = (C,E,N,#) be an event log. We want to suppress the events
e ∈ E, if their activity attribute value is a ∈ A. anona1(L) = L′ such
that: L′ = (C ′, E′, N ′,#′), E′ = {e ∈ E | #act(e) 6= a}, C ′ = C, and
N ′ = N . ∀e∈E′∀n∈N ′#′n(e) = #n(e), ∀c∈C′∀n∈N ′\{trace}#

′
n(c) = #n(c), and

∀c∈C′#′trace(c) = #trace(c) ↓E′ . The anonymizer signature of this operation is
sign = (sup, event, event).

Example 2 (Case-case suppression based on the trace length)
Let L = (C,E,N,#) be an event log. We want to suppress the cases c ∈ C,
if the trace length of the case is k ∈ N≥1. anonk2(L) = L′ such that: L′ =
(C ′, E′, N ′,#′), C ′ = {c ∈ C | |#trace(c)|6= k}, E′ = {e ∈ E | ∃c∈C′e ∈
#trace(c)}, and N ′ = N . ∀e∈E′∀n∈N ′#′n(e) = #n(e) and ∀c∈C′∀n∈N ′#′n(c) =
#n(c). The corresponding signature for this operation is sign = (sup, case, case).

Example 3 (Event-resource suppression based on the activity attribute)
Let L = (C,E,N,#) be an event log. We want to suppress the resource at-
tribute value of the events e ∈ E, if their activity attribute value is a ∈ A.
anona3(L) = L′ such that: L′ = (C ′, E′, N ′,#′), C ′ = C, E′ = E, and N ′ = N .
∀e∈E′∀n∈N ′\{res}#

′
n(e) = #n(e). For all e ∈ E′: #′res(e) = ⊥ if #act(e) = a,

otherwise #′res(e) = #res(e). ∀c∈C′∀n∈N ′#′n(c) = #n(c). The corresponding
anonymizer signature is sign = (sup, event, resource).

As above-mentioned, modifying cases may affect events and vice versa. In
Example 1, event suppression modifies the cases through the trace attribute,
which is an indirect effect not shown by the signature. Similarly, in Example 2,
suppressing cases results in event suppression, i.e., all the events in the trace
of the suppressed cases are removed. This is also an indirect effect which is not
reflected in the corresponding signature.

Addition is often used by the noise addition techniques where the noise which
is drawn from some distribution is randomly added to the original data to protect
the sensitive values. In process mining, the noise could be added to cases, events,
or the attribute values. In [14], the notion of differential privacy is used as a noise
addition technique to perform privacy-aware process discovery.
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Example 4 (Add an event to the end of traces based on the activity
attribute of the last event in the trace)
Let L = (C,E,N,#) be an event log, and N = {trace, act, res, time} such
that “trace” is the case attribute and “act”, “res”, and “time” are the event
attributes. We want to add an event e′ ∈ E \ E with the activity attribute
value a2 ∈ A and the resource attribute value r ∈ R at the end of the trace
of a case c ∈ C, if the activity of the last event in the trace is a1 ∈ A.
anona1,a2,r

4 (L) = L′ such that: L′ = (C ′, E′, N ′,#′), C ′ = C, N ′ = N , Ccond =
{c ∈ C | #act(#trace(c)|#trace(c)|) = a1}, and f ∈ Ccond → E \ E is a total injec-
tive function which randomly assigns unique event identifiers to the cases having
the desired condition. We denote Eadd = range(f) as the set of added events.
Hence, E′ = E ∪ Eadd. ∀e∈E∀n∈N ′\{trace}#

′
n(e) = #n(e). For all c ∈ Ccond:

#′act(f(c)) = a2, #′time(f(c)) = #time(#trace(c)|#trace(c)|)+1, and #′res(f(c)) =
r. ∀c∈C′\Ccond

#′trace(c) = #trace(c), and ∀c∈Ccond
#′trace(c) = #trace(c) · 〈f(c)〉.

The corresponding signature for this operation is sign = (add, case, trace).

Substitution replaces some values with some substitutions specified by a set,
i.e., a set of substitutions. The substitution could be done randomly or could
follow some rules, e.g., a round robin manner. In [20], a substitution technique
is used in order to mine roles from event logs while preserving privacy.

Example 5 (Event-activity substitution based on a set of sensitive ac-
tivities and a set of activity substitutions)
Let L = (C,E,N,#) be an event log, AL = {a ∈ A | ∃e∈E#act(e) = a} be the
set of activities in L, Ax ⊆ A \ AL be the set of activities used as the substi-
tutions, rand(X) ∈ X be a function which randomly returns an element from
the set X, and As ⊂ AL be the set of sensitive activities. We want to randomly
substitute the activity attribute value of the events e ∈ E, if the activity is sen-
sitive. anonAs,Ax

5 (L) = L′ such that: L′ = (C ′, E′, N ′,#′), C ′ = C, E′ = E,
and N ′ = N . For all e ∈ E′: #′act(e) = rand(Ax) if #act(e) ∈ As, otherwise
#′act(e) = #act(e). ∀e∈E′∀n∈N ′\{act}#

′
n(e) = #n(e), ∀c∈C′∀n∈N ′#′n(c) = #n(c).

sign = (sub, event, activity) is the signature corresponds to this operation.

Condensation first condenses the cases into similar clusters based on the sen-
sitive attribute values, then in each cluster the sensitive attribute values are
replaced with a collective statistical value, e.g., mean, mode, median, etc, of the
cluster. In [5], the authors introduce condensation-based methods for privacy-
preserving data mining. The following example shows how the condensation
operates on the event logs assuming that there exists a sensitive case attribute.

Example 6 (Case-attribute condensation based on a set of case clus-
ters, a cluster finder function, and using mode as the collective value)
Let L = (C,E,N,#) be an event log, CL = {cl1, cl2, ..., cln} be the set of case
clusters, whose sensitive attribute value is similar, such that for 1 ≤ i ≤ n:
cli ⊆ C and for 1 ≤ i, j ≤ n, i 6= j: cli ∩ clj = ∅. Also, let f ∈ C → CL
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be a function which retrieves the cluster of a case, and n′ ∈ N be the sen-
sitive case attribute, e.g., disease. For a set X, mode(X) ∈ X retrieves the
mode of the set. We want to replace the value of n′ for each case c ∈ C

with the mode of n′ in the cluster of the case. anonCL,f,n′

6 (L) = L′ such that:
L′ = (C ′, E′, N ′,#′), C ′ = C, N ′ = N , E′ = E, ∀c∈C′#′n′(c) = mode({#n′(c′) |
c′ ∈ f(c)}), ∀c∈C′∀n∈N ′\{n′}#

′
n(c) = #n(c), and ∀e∈E′∀n∈N ′#′n(e) = #n(e).

sign = (con, case, n′) is the signature corresponds to this operation.

Swapping aims to anonymize data by exchanging values of a sensitive attribute
between individual cases. The individual cases which are chosen to exchange the
sensitive attribute values are supposed to have similar sensitive attribute values.
Therefore, cases need to be clustered into the clusters with the similar sensitive
attribute values. The cases for swapping in the same cluster could be chosen
either randomly or by some methods, e.g., the rank swapping method [17]. The
following example shows how the swapping operates on the event logs assuming
that there exists a sensitive case attribute.

Example 7 (Case-attribute swapping based on a set of case clusters
and a cluster finder function)
Let L = (C,E,N,#) be an event log, CL = {cl1, cl2, ..., cln} be the set of case
clusters, whose sensitive attribute value is similar, such that for 1 ≤ i ≤ n:
cli ⊆ C and for 1 ≤ i, j ≤ n, i 6= j: cli ∩ clj = ∅. Also, let f ∈ C → CL be the
function which retrieves the cluster of a case, and n′ ∈ N be the sensitive case
attribute, e.g., disease. For a set X, rand(X) ∈ X is a function which randomly
retrieves an element from the set. We want to randomly swap the value of n′

for each case c ∈ C with the n′ value of another case in the same cluster.

anonCL,f,n′

7 (L) = L′ such that: L′ = (C ′, E′, N ′,#′), C ′ = C, N ′ = N , E′ = E,
∀c∈C′#′n′(c) = rand({#n′(c′) | c′ ∈ f(c)\{c}}), ∀c∈C′∀n∈N ′\{n′}#

′
n(c) = #n(c),

and ∀e∈E′∀n∈N ′#′n(e) = #n(e). The anonymizer signature of this operation is
sign = (swa, case, n′).

Cryptography includes a wide range of techniques such as encryption, hashing,
encoding, etc. In [22], the connector method is introduced as an encryption-
based technique which breaks the relation between the events in the traces,
while discovering the directly follows graph (DFG) [11] from an event log. In the
following example, we demonstrate the effect of applying an encryption technique
on the activity attribute of the events in an event log.

Example 8 (Event-activity encryption based on an encryption method)
Let L = (C,E,N,#) be an event log, ENC be the universe of encryption
method names, and KEY be the universe of keys. We want to encrypt the ac-
tivity attribute of all the events e ∈ E using a method m ∈ ENC and a key
k ∈ KEY . Let U be a universe of values, and Uenc be a universe of encrypted
values. enc ∈ U × ENC ×KEY 9 Uenc is a partial function which encryptes
a value u ∈ U given the name of method and a key. Given k ∈ KEY , and
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m ∈ ENC, anonk,m8 (L) = L′ such that: L′ = (C ′, E′, N ′,#′), C ′ = C, E′ = E,
and N ′ = N . ∀e∈E′#′act(e) = enc(#act(e),m, k), ∀e∈E′∀n∈N ′\{act}#

′
n(e) =

#n(e), and ∀c∈C′∀n∈N ′#′n(c) = #n(c). The signature of this operation is sign =
(cry, event, activity).

Generalization replaces some values, indicated by the target of operation and
probably some conditions, with a parent value in the taxonomy tree of an at-
tribute. The reverse operation of generalization is called specialization. The four
main generalization schemes are full-domain, subtree, sibling, cell [10]. In the
full-domain scheme, all values in an attribute are generalized to the same level
of the taxonomy tree. In the subtree scheme, at a non-leaf node, either all child
values or none are generalized. The sibling generalization is similar to the subtree,
but some siblings may remain ungeneralized. In the cell generalization, some in-
stances of a value may remain ungeneralized while in all the other schemes if a
value is generalized, all its instances are generalized.

The generalization techniques are often used by group-based anonymization
techniques. In the following, we demonstrate the effect of applying the general-
ization operation on the event logs by a simple example that uses the full-domain
scheme to generalize the time attribute of the events.

Example 9 (Event-time generalization based on a time generalization
method)
Let L = (C,E,N,#) be an event log and TL = {seconds,minutes, hours, days,
months, years} be the level of time generalization. gtl ∈ T → T is a function
that generalizes timestamps to the given level of time. We want to generalize the
time attribute of all the events e ∈ E to the level tl ∈ TL. anontl

9 (L) = L′ such
that: L′ = (C ′, E′, N ′,#′), C ′ = C, E′ = E, and N ′ = N . ∀e∈E′#′time(e) =
gtl(#time(e)), ∀e∈E′∀n∈N ′\{time}#

′
n(e) = #n(e), ∀c∈C′∀n∈N ′#′n(c) = #n(c).

sign = (gen, event, time) is the anonymizer signature of this operation.

Privacy-preserving data publishing in process mining, is done by applying a
sequence of the anonymization operations to fulfill a desired privacy requirement.
Note that the operations are often applied by the privacy models, where the data
utility preservation is also taken into account.

Definition 6 (Privacy Preserving Data Publishing in Process Mining
- ppdp). Let pr be the desired privacy requirement and UL be the universe of
event logs, ppdppr : UL → UL is a privacy method that gets an event log and
applies i ∈ N≥1 anonymization operations to the event log in order to provide
an anonymized event log which satisfies the given privacy requirement pr. If we
assume that pr is satisfied at the step (layer) n of the anonymization process, then
for 1 ≤ i ≤ n, Li = anoni(Li−1) such that L0 = L and Ln is the anonymized
event log which satisfies pr.

5.2 Data Utility and Data Leakage

We define potential original event logs to show how the anonymizer signature
can be exploited to narrow down the set of possible original event logs.
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Definition 7 (Potential Original Event Log). Let UL be the universe of
event logs and Usign be the universe of signatures. po ∈ UL×UL×Usign → B is a
function that for a given event log, an anonymized event log, and the signature of
the anonymized event log checks whether the given event log could be an original
event log. ol ∈ UL × Usign → 2UL retrieves a set of potential original event logs,
s.t., for L′ ∈ UL and sign ∈ Usign: ol(L′, sign) = {L ∈ UL | po(L,L′, sign)}.

To demonstrate the effect of the anonymizer signature, as a privacy metadata
candidate, on data utility and data leakage, we analyze the set of potential origi-
nal event logs. Here, the analysis is performed for Example 1. However, the con-
cept is general and can be applied to all the operations. Let L′ = (C ′, E′, N ′,#′)
be an anonymized event log and sign = (sup, event, resource) . For an event
log L = (C,E,N,#): po(L,L′, sign) = true ⇐⇒ (C = C ′ ∧ E = E′ ∧
N = N ′ ∧ ∀e∈E′∀n∈N ′\{res}#n(e) = #′n(e) ∧ ∀{e∈E′|#′

res(e)=⊥}#res(e) ∈ Ures ∧
∀{e∈E′|#′

res(e)6=⊥}#res(e) = #′res(e)∧∀c∈C′∀n∈N ′#n(c) = #′n(c)). ol(L′, sign) =
{L ∈ UL | po(L,L′, sign)} is the set of potential original event logs. Intuitively,
|ol(L′, sign)|= |{e ∈ E′|#′res(e) = ⊥}|×|Ures|, where Ures can be narrowed down
to a few resources based on some background knowledge.

If we ignore the target information in the signature, i.e., sign = (sup, event),
the uncertainty regarding the original event log and the results of analyses
would be much higher, since the suppressed data could be some events, or
any event attribute n, s.t., ∃e∈E#′n(e) = ⊥. That is, the uncertainty regard-
ing the results of analyses is expanded from the resource perspective to all the
perspectives. In contrast, if we add more information to the signature, recon-
structing the original event log could be easier for an adversary. For example,
if we add the condition of resource suppression to the signature, i.e., sign =
(sup, event, resource, (activity = a)), then |ol(L′, sign)|= |{e ∈ E′|(#′res(e) =
⊥∧#′act(e) = a)}|×|Ures|. That is, the only information that an adversary needs
to reconstruct the original event log, with high confidence, is to realize the set
of resources who perform the activity a. These analyses demonstrate that pri-
vacy metadata should contain the minimum information that preserves a balance
between data utility and data leakage.

5.3 Privacy Metadata

Privacy metadata in process mining should correspond to the privacy-preserving
data publishing and are supposed to capture and reflect the modifications, made
by the anonymization operations. For event data in the form of an event log,
privacy metadata are established by the means of XES. Figure 2 shows the meta
model of the proposed privacy metadata as an extension in the XES. The pri-
vacy metadata attributes are defined by an extension at the log level . Note that
the level (log, trace, or event) that is chosen to include the privacy metadata is
one of the important risk factors. Although the anonymization operations are
applied at the case and event levels, adding the corresponding metadata to the
same level is of high risk and may lead to the protected data leakage. Assume
that we add the privacy metadata regarding the resource suppression operation
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Fig. 2: The meta model of the proposed privacy metadata which is presented as an extension in XES.
The privacy metadata attributes are added as the log attributes.

applied to Table 1 at the event level. By doing so, we expose the exact event that
has been affected, and consequently, all the other information about the event
are exposed, e.g, the activity performed by the removed resource is “r”, and
background knowledge could connect this information to the protected sensitive
data. A similar risk scenario can be explored for the activity substitution oper-
ation applied to Table 1. If the corresponding metadata is added at the event
level, the substitution set of the activities could be partially or entirely exposed.

In Figure 2, anonymizations is the main privacy metadata element which con-
tains at least one anonymizer element. Each anonymizer element corresponds to
one anonymizer which is applied at a layer of the anonymization process in Def-
inition 6. The anonymizer element contains two types of attributes: mandatory
and optional. The mandatory attributes, residing in the solid box in Figure 2,
correspond to the anonymizer signature (Definition 5) and should be reflected in
the XES. However, the optional attributes, residing in the dash box in Figure 2,
are the attributes which could be included in the XES. Operation parameters
could contain the parameters which are passed to an anonymization operation,
e.g., in Example 8, the name of encryption method is an operation parame-
ter. Statistics could contain some statistics regarding the modification, e.g., the
number of modified events, and desired analyses could contain the appropriate
process mining activities which are applicable after modifying the event log.
Note that the more unnecessary information included in the privacy metadata,
the more risk is accepted. For example, if the statistics is included in an XES file
where it is indicated that only 10 out of 1000 events have been modified, then
an adversary makes sure that the transformed event log is almost the same as
the original one (99% similarity).

Figure 3 shows the privacy metadata recorded after transforming Table 1 to
Table 2. Note that privacy is considered as the prefix of the extension. At the
first layer of the anonymization, a substitution operation has been applied which
corresponds to Example 5, where As = {f} and Ax = {g, k}. The metadata at
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Fig. 3: Privacy metadata recorded after transforming Table 1 to Table 2 in order to satisfy a privacy
requirement. privacy is considered as the prefix of the extension.

this layer notices the analysts that some activity substitutions have been done at
the event level, but it reveals neither the set of sensitive activities nor the substi-
tution set. At the second layer of the anonymization, a generalization operation
has been done which generalizes the timestamps to the minutes level and corre-
sponds to Example 9, where tl = minutes. At the last layer of the anonymization
(n = 3 in Definition 6), a suppression operation has been done which suppresses
some resources and corresponds to Example 3, where the activity attribute value
is r. This lets the analysts know that some resource suppression have been done
without revealing the corresponding event. Note that the concept of layer is
implicitly established by the means of list, which imposes an order on the keys.

So far, we only focused on the privacy preservation techniques applying the
main anonymization operations on the original event log and transform it to
another event log. However, there could be the techniques that do not preserve
the structure of a standard event log. For example, in [22], the original event log
is transformed to another form of event data where directly-follows relations are
extracted from the original traces for discovering directly-follows graph. Such in-
termediate results derived from event logs and intended to relate logs and models
are called abstractions [3]. We introduce Event Log Abstraction (ELA) to deal
with the intermediate results created by some privacy preservation techniques
which are not in the form of standard event logs. ELA is an XML tag-based lan-
guage composed of two main parts: header and data. The header part contains
the privacy/confidentiality metadata, and the data part contains the data de-
rived from the original event log. The privacy metadata in ELA includes: origin,
method, and desired analyses. The origin tag shows name of the event log the
abstraction derived from, the method tag contains name of the method, and the
desired analyses contains list of the appropriate analyses w.r.t. the abstraction.
The data part represents the data derived from the log in a tabular manner.
Figure 4 shows the ELA derived from the event log “BPI Challenge 2012” [24]
by applying the connector method [22].

5.4 Tool Support

Since most of the privacy preservation techniques in process mining have been de-
veloped in Python, in order to support the tools, we have developed a Python li-
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Fig. 4: The event log abstraction derived from the event log “BPI Challenge 2012” after applying
the connector method. Only the first 3 items are shown.

brary which is published as a Python package.2,3 The library is based on PM4Py
[6] and includes two classes correspond to two types of event data generated by
the privacy preservation techniques in process mining: privacyExtension and
ELA. The general advantage of the privacy metadata library is that the privacy
experts do not need to deal with the tag-based files in order to read (write) the
privacy metadata. Another crucial requirement provided by the privacyExten-
sion class is that it keeps the consistency of the privacy metadata by managing
the order of the anonymizers in the anonymizations list. This class provides
four main methods: set anonymizer, set optional anonymizer, get anonymiza-
tions, and get anonymizer. The set anonymizer method gets the mandatory
attributes and appends them to the anonymizations list as an anonymizer if
there already exists a privacy extension, otherwise it first creates a privacy ex-
tension and an anonymizations list, then adds the attributes to the list. The
set optional anonymizer method is responsible to add the optional attributes
and should be called after setting the mandatory attributes. This method gets
the layer, which is an index in the anonymizations list, and optional attributes
and adds the attributes to the given layer. The get anonymizations method re-
turns the whole anonymizations tag in the XES file as a Python dictionary. The
get anonymizer method gets a layer and returns the metadata of the layer.

2
pip install p-privacy-metadata

3
https://github.com/m4jidRafiei/privacy metadata
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6 Conclusions

Due to the fact that event logs could contain highly sensitive personal informa-
tion, and regarding the rules imposed by the regulations, e.g., GDPR, privacy
preservation in process mining is recently receiving more attention. Event logs
are modified by privacy preservation techniques, and the modifications may re-
sult in the event data which are not appropriate for all the process mining
algorithms. In this paper, we discussed types of event data generated by the
privacy preservation techniques. We provided formal definitions for the main
anonymization operations in process mining. Privacy metadata were proposed
for event logs which are supported by formal definitions in order to demon-
strate the completeness of the proposed infrastructure. The ELA (Event Log
Abstraction) was introduced to cope with event data which are not in the form
of standard event logs. We employed the IEEE XES standard in order to con-
sistently develop our proposal for privacy metadata of event logs in practice,
where a privacy extension was introduced. We also provided a Python library to
support the privacy preservation tools for process mining which have been often
developed in Python.
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