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Abstract. Process mining aims to provide insights into the actual pro-
cesses based on event data. These data are widely available and often con-
tain private information about individuals. Consider for example health-
care information systems recording highly sensitive data related to di-
agnosis and treatment activities. Process mining should reveal insights
in the form of annotated models, yet, at the same time, should not re-
veal sensitive information about individuals. In this paper, we discuss
the challenges regarding directly applying existing well-known privacy-
preserving techniques to event data. We introduce the TLKC-privacy
model for process mining that provides privacy guarantees in terms of
group-based anonymization. It extends and customizes the LKC-privacy
model presented to deal with high-dimensional, sparse, and sequential
trajectory data. Experiments on real-life event data demonstrate that
our privacy model maintains a high utility for process discovery and
performance analyses while preserving the privacy of the cases.

Keywords: Responsible process mining · Privacy preservation · Process
discovery · Performance analyses

1 Introduction

Event logs are used by process mining algorithms to discover and analyze the
real processes. An event log is a collection of events and such information is
widely available in current information systems [1]. Each event is described by
its attributes and typical attributes required for process mining algorithms are
case id, activity, timestamp, and resource. The minimal requirements for process
mining are that any event can be related to both a case and activity and that
the events that belong to a case are ordered, which is often done by means of
timestamps [1]. Therefore, timestamps play a crucial role in process mining algo-
rithms and need to be stored and processed. However, the event data containing
accurate timestamps (in milliseconds) are highly sensitive.

Moreover, some of the event attributes may refer to individuals, e.g., in the
health-care context, the case id may refer to the patient whose data is recorded,
and the resource may refer to the employees performing activities for the pa-
tients, e.g., nurses or surgeons. When the individuals’ data are explicitly or
implicitly included, privacy issues arise. According to regulations such as the
European General Data Protection Regulation (GDPR) [21], organizations are
obliged to consider the privacy of individuals.



2 Majid Rafiei et al.

Regarding the four main attributes of events, two different perspectives for
privacy in process mining can be considered; resource perspective and case per-
spective. The resource perspective refers to the privacy of the individuals per-
forming the activities, and the case perspective considers the privacy of the
individuals whose data is recorded and analyzed. Depending on the context,
the relative importance of these perspectives may vary. However, often the case
perspective is more important than the resource perspective. For example, in the
health-care context, the activity performers could be publicly available. However,
what happens for a specific patient and her/his personal information should be
kept private. In this paper, we focus on the case perspective.

There are many activities and techniques in process mining such as process
discovery, conformance checking, social network analyses, prediction, etc. How-
ever, the three basic types of process mining are; process discovery, conformance
checking, and enhancement [1]. The proposed privacy model focuses on process
discovery and a subfield of enhancement called performance analyses. Since the
event data used by process mining algorithms are high-dimensional sparse data,
privacy preservation with high data utility is significantly challenging.

The aim of this paper is to provide a privacy-preserving model for process
mining protecting the privacy of cases, yet, at the same time, maintains the util-
ity of the process discovery and performance analyses. The utility is preserved in
terms of similarity of the results provided by the privacy-preserving approach to
the results obtained from the original data. We introduce TLKC-privacy model,
which exploits some restrictions regarding the availability of the background
knowledge in the real world to deal with process mining-specific challenges. Our
model is an extension for the LKC-privacy model [16,8], which was presented
to deal with privacy challenges of the trajectory data. The LKC-privacy model
generalizes several traditional privacy models, such as k-anonymity, confidence
bounding, (α,k)-anonymity, and l-diversity, which are inherited by our model.
We evaluate our approach with respect to the typical trade-off between privacy
guarantees and the loss of accuracy. The approach is evaluated on a real-life
event data belonging to a hospital (Sepsis) containing infrequent behavior. Our
experiments show that our approach maintains a high utility, assuming realistic
background knowledge while using tunable privacy parameters.

The rest of the paper is organized as follows. In Section 2, we explain the
motivation and challenges. In Section 3, formal models are presented for event
log and attack scenarios. We explain the TLKC-privacy model in Section 4. In
Section 5, the implementation and evaluation are described. Section 6 outlines
related work, and Section 7 concludes the paper.

2 Motivation

To motivate the necessity to deal with privacy issues in process mining, we
illustrate the problem with an example in health-care context. Suppose that
Table 1 shows a part of an event log recorded by an information system in
a hospital. Assuming that an adversary knows that patient’s data are in the
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Table 1: Sample event log (each row represents an event).
Case Id Activity Timestamp Resource Age Disease

1 Registration (RE) 01.01.2019-08:30:00 Employee1 22 Flu
1 Visit (V) 01.01.2019-08:45:00 Doctor1 22 Flu
2 Registration (RE) 01.01.2019-08:46:00 Employee1 30 Infection
3 Registration (RE) 01.01.2019-08:50:00 Employee1 32 Infection
4 Registration (RE) 01.01.2019-08:55:00 Employee4 29 Poisoning
1 Release (RL) 01.01.2019-08:58:00 Employee2 22 Flu
5 Registration (RE) 01.01.2019-09:00:00 Employee1 35 Cancer
6 Registration (RE) 01.01.2019-09:05:00 Employee4 35 Hypotension
4 Visit (V) 01.01.2019-09:10:00 Doctor2 29 Poisoning
5 Visit (V) 01.01.2019-09:20:00 Doctor4 35 Cancer
4 Infusion (IN) 01.01.2019-09:30:00 Nurse2 29 Poisoning
2 Hospitalization (HO) 01.01.2019-09:46:00 Employee3 30 Infection
3 Hospitalization (HO) 01.01.2019-10:00:00 Employee3 32 Infection
5 Hospitalization (HO) 01.01.2019-09:55:00 Employee6 35 Cancer
2 Blood Test (BT) 01.01.2019-10:00:00 Nurse1 30 Infection
5 Blood Test (BT) 01.01.2019-10:10:00 Nurse2 35 Cancer
3 Blood Test (BT) 01.01.2019-10:15:00 Nurse1 32 Infection
6 Visit (V) 01.01.2019-10:20:00 Doctor3 35 Hypotension
4 Release (RL) 01.01.2019-10:30:00 Employee2 29 Poisoning
6 Release (RL) 01.01.2019-14:20:00 Employee2 35 Hypotension
2 Blood Test (BT) 01.02.2019-08:00:00 Nurse2 30 Infection
2 Visit (V) 01.02.2019-10:00:00 Doctor2 30 Infection
3 Visit (V) 01.02.2019-10:15:00 Doctor3 32 Infection
2 Release (RL) 01.02.2019-14:00:00 Employee2 30 Infection
3 Release (RL) 01.02.2019-14:15:00 Employee5 32 Infection
5 Release (RL) 01.02.2019-16:00:00 Employee5 35 Cancer

event log (as a case), with little information about the activities having been
done for the patient, the adversary is easily able to connect the patient to the
corresponding Case Id and find the complete sequence of activities having been
performed for the patient. For example, if the adversary knows that two blood
tests have been performed for the patient, the only matching case is case 2.
We call this attack case linkage attack. Note that the complete sequence of
activities having been done for a patient is considered as the sensitive person-
specific information which can be disclosed by the case linkage attack. Moreover,
if we consider some attributes in the event log as sensitive, e.g., diagnosis and test
results, the adversary can go further and link the sensitive information as well.
For example, the disease that belongs to case 2 is infection. This attack is called
attribute linkage. Note that the attribute linkage attack does not necessarily need
to be done after the case linkage, i.e., if more than one case corresponds to the
adversaries knowledge while all the cases have the same value as the sensitive
attribute, the attribute linkage could happen without a successful case linkage.

Many privacy models, such as k-anonymity and its extensions [12], have been
introduced to deal with the aforementioned attacks in the context of relational
databases. In these privacy models, the data attributes are classified into four
main categories including; explicit identifier, quasi-identifier, sensitive attributes,
and non-sensitive attributes. The explicit identifier is a set of attributes contain-
ing information that explicitly identifies the data owner, the quasi-identifier is
a set of attributes that could potentially identify the data owner, the sensitive
attributes consist of sensitive person-specific information such as disease, and
the non-sensitive attributes contain all the attributes that do not fall into the
previous three categories [3]. In the group-based privacy models, the idea is to
disorient potential linkages by generalizing the records into equivalence classes
having the same values on the quasi-identifier. These privacy models are effec-



4 Majid Rafiei et al.

tive for anonymizing relational data. However, they are not easily applicable to
event data due to some specific properties of event data.

In process mining, the explicit identifiers do not need to be stored and pro-
cessed. By identifier, we often refer to a dummy identifier, e.g., incremental IDs,
created to distinguish cases. As already mentioned, the minimal required infor-
mation for process mining is the sequence of activities having been performed
for each case, known as a trace. Therefore, an event log can be defined as a mul-
tiset of traces, i.e., a multiset of sequences of activities. Considering this minimal
required information, the first challenge is that a trace can be considered as a
quasi-identifier and, at the same time, as a sensitive attribute. In other words,
a complete sequence of activities belonging to a case, is sensitive person-specific
information, at the same time, part of a trace, i.e., only some of the activities,
can be utilized as a quasi-identifier to identify the trace owner.

The quasi-identifier role of traces in process mining causes significant chal-
lenges for group-based anonymization techniques because of two specific prop-
erties of event data; high variability and Pareto distribution. In an event log the
variability of traces is high because: (1) There could be tens of different activities
happening in any order, (2) One activity or a bunch of activities could happen
repetitively, and (3) Some traces could contain a few activities compared to all
possible activities. In an event log, trace variants are often distributed similarly
to the Pareto distribution, i.e., few trace variants are frequent and many trace
variants are unique. Enforcing k-anonymity on little-overlapping traces in a high-
dimensional space is a significant challenge, and the majority part of the data
have to be suppressed in order to achieve the desired anonymization.

3 Preliminaries (Formal Models)

In this section, we provide formal models for event logs and possible attacks.
These formal models will be used in the remainder for describing the approach.

3.1 Event Log Model

For a given set A, A∗ is the set of all finite sequences over A, and B(A) is the set
of all multisets over the set A. A finite sequence over A of length n is a mapping
σ ∈ {1, ..., n} → A, represented as σ = 〈a1, a2, ..., an〉 where σi = ai = σ(i) for
any 1 ≤ i ≤ n. |σ| denotes the length of the sequence. For σ1, σ2 ∈ A∗, σ1 v σ2 if
σ1 is a subsequence of σ2, e.g., 〈a, b, c, x〉 v 〈z, x, a, b, b, c, a, b, c, x〉. For σ ∈ A∗,
{a ∈ σ} is the set of elements in σ, and [a ∈ σ] is the multiset of elements in σ,
e.g., [a ∈ 〈x, y, z, x, y〉] = [x2, y2, z]. For x = (a1, a2, ..., an) ∈ A1 ×A2 × ...×An,
πk(x) = ak, i.e., the k-th element of the tuple. For σ ∈ (A1 × A2 × ... × An)∗,
πk(σ) = 〈πk(x) | x ∈ σ〉, i.e., the sequence projected on the k-th element.
For example, π1(〈(a1, t1), (a2, t2), ..., (an, tn)〉) = 〈a1, a2, ..., an〉. These notations
can be combined, e.g., [a ∈ πk(σ)] is the multiset of elements for the sequence
projected on the k-th element.
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Table 2: A simple event log derived from Table 1 (each row represents a simple process instance).
Case Id Simple Trace Disease

1 〈(RE,01-08:30),(V,01-08:45),(RL,01-08:58)〉 Flu

2 〈(RE,01-08:46),(HO,01-09:46),(BT,01-10:00),(BT,02-08:00),(V,02-10:00),(RL,02-14:00)〉 HIV

3 〈(RE,01-08:50),(HO,01-10:00),(BT,01-10:15),(V,02-10:15),(RL,02-14:15)〉 Infection

4 〈(RE,01-08:55),(V,01-09:10),(IN,01-09:30),(RL,01-10:30)〉 Poisoning

5 〈(RE,01-09:00),(V,01-09:20),(HO,01-09:55),(BT,01-10:10),(RL,02-16:00)〉 Cancer

6 〈(RE,01-09:05),(V,01-10:20),(RL,01-14:20)〉 Hypotension

Definition 1 (Event, Event Log). An event is a tuple e = (a, r, c, t, d1, ..., dm),
where a ∈ A is the activity associated with the event, r ∈ R is the resource, who
is performing the activity, c ∈ C is the case id, t ∈ T is the event timestamp, and
d1,...,dm is a list of additional attributes values, where for any 1 ≤ i ≤ m, di ∈ Di
(domain of attributes). We call ξ = A × R × C × T × D1 × ... × Dm the event
universe. An event log is EL ⊆ ξ where each event can appear only once, i.e.,
events are uniquely identifiable by their attributes.

Definition 2 (Simple Process Instance, Simple Trace, Simple Event).
We define P = C × (A×T )∗×S as the universe of all simple process instances,
where S is the domain of the sensitive attribute. Each simple process instance
p = (c, σ, s) ∈ P represents a simple trace σ = 〈(a1, t1), (a2, t1), ..., (an, tn)〉,
which is a sequence of simple events, containing activities and timestamps,
belonging to the case c with s as the sensitive attribute value.

Definition 3 (Simple Event Log). Let P = C×(A×T )∗×S be the universe of
simple process instances. A simple event log is EL ⊆ P such that if (c1, σ1, s1) ∈
EL, (c2, σ2, s2) ∈ EL, and c1 = c2, then σ1 = σ2 and s1 = s2.

Table 2 shows a simple event log derived from Table 1, where timestamps are
represented as “day-hour:minute”. In this event log, “Disease” is the attribute
which is considered as the sensitive attribute. In the remainder, by event log,
trace, and event, we refer to Definition 2 and Definition 3.

3.2 Attack Model

Considering the typical scenario of data collection and data publishing [7], we
assume the trusted model, where the data holder (here, a hospital) is trustworthy.
However, the data recipient (here, a process miner) is not trustworthy, i.e., a pro-
cess miner may attempt to identify sensitive information from record owners. In
this subsection, we explain the real attack scenarios based on the quasi-identifier
role of traces. Note that the examples used in the following definitions are based
on Table 2.

Definition 4 (Background Knowledge 1 - bkELset ). In the first scenario, we
assume that the adversary knows a subset of activities having been done for
the case, and this information can lead to the case (attribute) linkage attack.
Let EL be an event log, we formalize this background knowledge by a function
bkELset : 2A → 2EL. For A ⊆ A, bkELset (A) = {(c, σ, s) ∈ EL | A ⊆ {a ∈ π1(σ)}}.
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For example, if the adversary knows that {V, IN} is the subset of activities
having been done for a case, the only matching case is case 4. Therefore, the
whole sequence of activities and the sensitive attribute are disclosed.

Definition 5 (Background Knowledge 2 - bkELmult). In this scenario, we
assume that the adversary knows not only a subset of activities having been done
for the case, but also the frequency of each activity. Let EL be an event log, we
formalize this background knowledge by a function bkELmult : B(A) → 2EL. For
B ∈ B(A), bkELmult(B) = {(c, σ, s) ∈ EL | B ⊆ [a ∈ π1(σ)]}.

For example, if the adversary knows that [HO1, BT 2] is the multiset of ac-
tivities having been performed for a case, the only matching case is case 2.
Consequently, the whole sequence of activities and the diseases are disclosed.

Definition 6 (Background Knowledge 3 - bkELseq). In this scenario, we as-
sume that the adversary knows a subsequence of activities having been done for
the case, and this information can lead to the case (attribute) linkage attack.
Let EL be an event log, we formalize this background knowledge by a function
bkELseq : A∗ → 2EL. For σ ∈ A∗, bkELseq (σ) = {(c, σ′, s) ∈ EL | σ v π1(σ′)}.

For example, if the adversary knows that 〈RE, V,HO〉 is the subsequence
of activities having been performed for a case, the only matching case is case
5. Note that case 3 and case 5 have the same set of activities and by assuming
bkELset , the adversary is not able to single out a case, and since the matching cases
have different values as the sensitive attribute, the adversary cannot certainly
deduce the actual value of the sensitive attribute.

As can be seen, case 1 and case 6 are not distinguishable according to the de-
fined types of background knowledge, i.e., the case linkage attack is not possible.
However, by considering the timestamps, another attack scenario can be consid-
ered. In order to avoid revealing the exact timestamps of events, we assume that
the timestamps are relative rather than absolute.

Definition 7 (Relative Timestamps). Let σ = 〈(a1, t1), (a2, t2), ..., (an, tn)〉
be a trace and t0 be an initial timestamp, rel(σ) = 〈(a1, t

′
1), (a2, t

′
2), ..., (an, t

′
n)〉

is the trace with relative timestamps such that t′1 = t0 and for each 1 < i ≤ n,
t′i = ti − t1 + t0.

Definition 8 (Background Knowledge 4 - bkELrel ). In this scenario, we as-
sume that the adversary knows not only a subsequence of activities, but also the
time difference between the activities. Let EL be an event log, we formalize this
background knowledge by a function bkELrel : (A×T )∗ → 2EL. For σ ∈ (A×T )∗,
bkELrel (σ) = {(c, σ′, s) ∈ EL | rel(σ) v rel(σ′)}.

For example, case 1 and case 6 have the same sequence of activities. However,
if the adversary knows that for a victim case, it took almost four hours to get
released after visiting by a doctor, the corresponding possible cases narrow down
to only one case, which is case 6. The defined types of background knowledge
can be categorized from more general and easily achievable to more specific
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and difficult to achieve, i.e., bkELset is the most general and easier to gain by an
adversary, and bkELrel is the most specific one. Corresponds to the four defined
types of background knowledge and considering a trace in an event log, we define
four types of quasi-identifiers w.r.t. the trace and four matching sets for the trace.

Definition 9 (Trace-based Quasi-identifiers - QIDσ
set, QID

σ
mult, QID

σ
seq,

QIDσ
rel). Let EL be an event log and σ be a trace such that (c, σ, s) ∈ EL.

Given the four defined types of background knowledge, QIDσ
set = {a ∈ π1(σ)},

QIDσ
mult = [a ∈ π1(σ)], QIDσ

seq = π1(σ), and QIDσ
rel = rel(σ).

Definition 10 (Matching Sets - ELσset, EL
σ
mult, EL

σ
seq, EL

σ
rel). Let EL be

an event log and σ be a trace such that (c, σ, s) ∈ EL. Given the four defined
types of background knowledge, ELσset = {bkELset (A) | A ⊆ QIDσ

set}, ELσmult =
{bkELmult(B) | B ⊆ QIDσ

mult}, ELσseq = {bkELseq (σ′) | σ′ v QIDσ
seq}, and ELσrel =

{bkELrel (σ′) | rel(σ′) v QIDσ
rel}.

4 TLKC-Privacy Model

Regular k-anonymity and its extended privacy models assume that an adver-
sary could use all of the quasi-identifier attributes as background knowledge to
launch the attacks. However, in reality, it is almost impossible for an adversary
to acquire all the information of a target victim, and it requires non-trivial ef-
fort to gather each piece of background knowledge. The LKC-privacy model
exploits this limitation and assume that the adversary’s background knowledge
is bounded by at most L values of the quasi-identifier.

Based on the bounded background knowledge, proposed by the LKC-privacy
model [16], we introduce TLKC-privacy model for process mining. In the LKC-
privacy model, L refers to the power of background knowledge, i.e., the length
of a sequence, K refers to the k in the k-anonymity definition, and C refers to
the bound of confidence regarding the sensitive attribute values in an equiva-
lence class. In the TLKC-privacy model T ∈ {seconds,minutes, hours, days} is
added which refers to the accuracy of timestamps. For example, when T = hours,
the accuracy of timestamps is limited at hours level. We denote EL(T ) as the
event log with the accuracy of timestamps at the level T . The general idea
of TLKC-privacy is to ensure that the background knowledge with maximum
length L in EL(T ) is shared by at least K cases, and the confidence of inferring
any sensitive value in S given the quasi-identifier is not greater than C.

Definition 11 (TLKC-Privacy). Let EL be an event log, L be the maximum
length of background knowledge, T ∈ {seconds,minutes, hours, days} be the ac-
curacy of timestamps, and type ∈ {set,mult, seq, rel}. EL(T ) satisfies TLKC-
privacy if and only if for any trace σ v σ′, (c, σ′, s) ∈ EL, and 0<|σ|≤ L:

– |EL(T )σtype|≥ K, where K ∈ N>0, and

– Pr(s|QIDσ
type) =

|{s∈π3(p)|p∈EL(T )σtype}|
|EL(T )σtype|

≤ C for any s ∈ S, where 0 < C ≤ 1

is a real number as the confidence threshold.
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TLKC-privacy inherits several properties from LKC-privacy that makes it
suitable for anonymizing high-dimensional sparse event data. First, it provides
a major relaxation from traditional k-anonymity based on a reasonable assump-
tion that the adversary has restricted knowledge. Second, it generalizes several
privacy models including; k-anonymity, confidence bounding, (α, k)-anonymity,
and l-diversity. Third, it provides the flexibility to adjust the trade-off between
data privacy and data utility, and between an adversary’s power and data utility.

4.1 Utility Measure

The measure of data utility depends on the task which is supposed to be per-
formed. However, in process mining, and specifically for process discovery, we
want to preserve the maximal frequent traces which are defined as follows.

Definition 12 (Maximal Frequent Trace - MFT). Let EL be an event log.
For a given minimum support threshold Θ, a non-empty trace σ v σ′ such that
(c, σ′, s) ∈ EL is maximal frequent in the EL if σ is frequent, i.e., the frequency
of σ is greater than or equal to Θ, and no supertrace of σ is frequent in the EL.

The goal of data utility is to preserve as many MFT as possible. We denote
the set of MFT in an event log EL by MFTEL, which is much smaller than the
set of frequent traces in the event log EL. Note that any subtrace of an MFT is
also a frequent trace, and once all the MFT have been discovered, the support
counts of any frequent subtrace can be computed by scanning the data once.

4.2 The Algorithm

The first step is to find all traces that violate the given TLKC-privacy require-
ment. We define a violating trace as follows.

Definition 13 (Violating Trace). Let EL be an event log, σ v σ′ such
that (c, σ′, s) ∈ EL, L be the maximum length of the background knowledge,
T ∈ {seconds,minutes, hours, days} be the accuracy of timestamps, type ∈
{set,mult, seq, rel}, and 0<|σ|≤ L. σ is violating with respect to TLKC-privacy
requirements if |EL(T )σtype|< K or Pr(s|QIDσ

type) > C for any s ∈ S.

An event log satisfies TLKC-privacy, if all violating traces w.r.t. the given
privacy requirement are removed. A näıve approach is to determine all possible
violating traces and remove them. However, this approach is inefficient because
of the numerous number of violating traces, even for a weak privacy requirement.

Table 3: A simple event log with relative timestamps for monotonic property.
Case Id Trace Disease
1 σ1=〈(RE,01-00:00:00),(V,01-01:02:00)〉 Flu
2 σ2=〈(RE,01-00:00:00),(V,01-01:02:00),(RL,01-01:10:00)〉 Flu
3 σ3=〈(RE,01-00:00:00),(V,01-01:02:00),(RL,01-01:10:00)〉 HIV
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Algorithm 1: TLKC-Privacy Algorithm
Input: Original event log EL
Input: T , L, K, C, and Θ
Input: Sensitive values S
Output: Anonymized event log EL′ which satisfies TLKC-privacy

1 generate MFTEL and MV TEL;
2 generate MFTtree and MV Ttree as the prefix trees for MFTEL and MV TEL;
3 while there is node (event) in MV Ttree do
4 select an event (node) ew that has the highest score to suppress;
5 delete all the MVT and MFT containing the event ew from MV Ttree and MFTtree;
6 update Socre(e) for all the remaining events (nodes) in MV Ttree;
7 add ew to the suppression set SupEL;

8 end
9 foreach e ∈ SupEL do

10 suppress all instances of e from EL;
11 end

12 return suppressed EL as EL′;

In [16], the authors demonstrate that LKC-privacy is not monotonic w.r.t. L,
which holds for TLKC-privacy as well. The anonymity threshold K is monotonic
w.r.t. L, i.e., if L′ ≤ L and C = 100%, an event log EL satisfying TLKC-privacy
must satisfy TL′KC-privacy. However, confidence threshold C is not monotonic
w.r.t. L, i.e., if σ is non-violating trace, its subtrace may or may not be a non-
violating trace. For example, in Table 3, for L = 3 and C = 75%, trace σ2

satisfies Pr(Flu|σ2) ≤ 75%. However, its subtrace σ1 with L′ = 2 does not
satisfy Pr(Flu|σ1) ≤ 75%. Therefore, in order to satisfy the second condition
in Definition 11, it is insufficient to ensure that every trace σ in EL satisfies
Pr(s|QIDσ

type) ≤ C for |σ|= L, and the condition should hold for 0<|σ|≤ L. To
this end, the minimal violating traces are defined.

Definition 14 (Minimal Violating Trace - MVT). Let EL be an event log,
a violating trace σ v σ′ such that (c, σ′, s) ∈ EL is a minimal violating trace in
the EL if every proper subtrace of σ is not a violating trace in the EL.

Every violating trace in an event log is either an MVT or it contains an MVT.
Therefore, if an event log EL contains no MVT, then EL contains no violating
trace. We denote the set of MVT in an event log EL by MV TEL, which is
much smaller than the set of violating traces in the event log EL. A greedy
function Score : ξ → R>0 is defined to choose an event e to suppress such that
it maximizes the number of removed minimal violating traces (privacy gain),
but minimizes the number of removed maximal frequent traces (utility loss).
For e ∈ ξ, Score(e) = PG(e)/UL(e)+1. PG(e) is the number of MVT containing
the event e, and UL(e) is the number of MFT containing the event e. In order
to avoid diving by zero (when e does not belong to any MFT), 1 is added to
the denominator. The event e with the highest score is called the winner event,
denoted by ew. Algorithm 1 summarizes all the steps of TLKC-privacy.

Suppose that Table 4 shows a simple event log EL where timestamps are rep-
resented by integer values as hours. The first line in Algorithm 1 generates the
set of maximal frequent traces (MFTEL) and the set of minimal violating traces
(MV TEL) from the event log EL with T = hours, L = 2, K = 2, C = 50%, Θ =
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(a) MFTtree (b) MV Ttree

Fig. 1: The MFTtree and MV Ttree generated for the event log Table 4 with T = days, L = 2,
K = 2, C = 50%, Θ = 25%, S = Disease, and bkELrel .

25%, Disease as the sensitive attribute S, and bkELrel as the background knowl-
edge. MFTEL = {〈(RE, 1), (V, 6), (V, 8)〉, 〈(RE, 1), (BT, 7), (V, 8)〉, 〈(RE, 1), (V, 8), (RL, 9)〉, 〈(HO,

4), V, 5), (BT, 7)〉, 〈(BT, 7), (V, 8), (RL, 9)〉, 〈(V, 6), (BT, 7)〉, 〈(V, 6), (RL, 9)〉, 〈(HO, 4), (V, 8)〉, 〈(HO,

4), (RL, 9)〉} , and MV TEL = {〈(RE, 1), (HO, 4)〉, 〈(RE, 1), (V, 5)〉, 〈(RE, 1), (BT, 7)〉, 〈(V, 5), (V, 8)

〉, 〈(V, 5), (RL, 9)〉}.

Figure 1 shows theMFTtree andMV Ttree generated by line 2 in Algorithm 1,
where each root-to-leaf path represents one trace, and each node represents an
event in a trace with the frequency of occurrence. Table 5 shows the initial
Score(e) of every event (node) in the MV Ttree. Line 4 determines the winner
event ew which is (V, 5). Line 5 deletes all the MVT and MFT containing the
winner event ew, i.e., subtree 2 and the path 〈(RE, 1), (V, 5)〉 of subtree 1 in
the MV Ttree as well as the path 〈(HO, 4), (V, 5), (BT, 7)〉 of subtree 4 in the
MFTtree are removed and frequencies get updated. Line 6 updates the scores
based on the new frequencies of events. Table 6 shows the remaining events in
MV Ttree with the updated scores. Line 7 adds the winner event to a suppression
set SupEL. Lines 4-7 is repeated until there is no node in MV Ttree. According
to Table 6 the next winner event is (RE, 1), and after deleting all the MVT
and MFT containing this event, MV Ttree is empty. Therefore, at the end of the
while loop, the suppression set SupEL = {(V, 5), (RE, 1)}. The foreach loop
suppresses all the instances of the events (global suppression) in the SupEL from
the EL, and the last line returns the suppressed EL as the anonymized event
log EL′ which is shown by Table 7. Table 8 shows the result by applying the
traditional k-anonymity with k = 2 on the event log Table 4. One can see that
even for a weak privacy requirement, much information needs to be suppressed
compared to the results provided by TLKC-privacy.

Table 4: A simple event log where timestamps are represented by integer values.
Case Id Trace Disease
1 〈(RE, 1), (HO, 4), (V, 5), (BT, 7), (V, 8)〉 Cancer
2 〈(BT, 7), (V, 8), (RL, 9)〉 Infection
3 〈(HO, 4), (V, 5), (BT, 7), (RL, 9)〉 Poisoning
4 〈(RE, 1), (V, 6), (V, 8), (RL, 9)〉 Infection
5 〈(HO, 4), (V, 8), (RL, 9)〉 Poisoning
6 〈(V, 6), (BT, 7), (RL, 9)〉 Flu
7 〈(RE, 1), (BT, 7), (V, 8), (RL, 9)〉 Flu
8 〈(RE, 1), (V, 6), (BT, 7), (V, 8)〉 Cancer
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Table 5: The initial scores for the events in Fig. 1b.
(RE, 1) (HO, 4) (V, 5) (BT, 7) (V, 8) (RL, 9)

PG(e) 3 1 3 1 1 1

UL(e)+1 4 4 2 5 6 5

Score(e) 0.75 0.25 1.50 0.20 0.16 0.20

Table 6: The first updated scores.
(RE, 1) (HO, 4) (BT, 7)

PG(e) 2 1 1

UL(e)+1 4 3 4

Score(e) 0.5 0.33 0.25

Table 7: The anonymized event log for Table 4 with
T = days, L = 2, K = 2, C = 50%, Θ = 25%,
S = Disease, and bkELrel .

Case Id Trace Disease

1 〈(HO, 4), (BT, 7), (V, 8)〉 Cancer

2 〈(BT, 7), (V, 8), (RL, 9)〉 Infection

3 〈(HO, 4), (BT, 7), (RL, 9)〉 Poisoning

4 〈(V, 6), (V, 8), (RL, 9)〉 Infection

5 〈(HO, 4), (V, 8), (RL, 9)〉 Poisoning

6 〈(V, 6), (BT, 7), (RL, 9)〉 Flu

7 〈(BT, 7), (V, 8), (RL, 9)〉 Flu

8 〈(V, 6), (BT, 7), (V, 8)〉 Cancer

Table 8: The traditional 2-anonymity event
log for Table 4.

Case Id Trace Disease

1 〈(BT, 7), (V, 8)〉 Cancer

2 〈(BT, 7), (V, 8), (RL, 9)〉 Infection

3 〈(BT, 7), (RL, 9)〉 Poisoning

4 〈(V, 8), (RL, 9)〉 Infection

5 〈(V, 8), (RL, 9)〉 Poisoning

6 〈(BT, 7), (RL, 9)〉 Flu

7 〈(BT, 7), (V, 8), (RL, 9)〉 Flu

8 〈(BT, 7), (V, 8)〉 Cancer

5 Evaluation

We evaluate our proposed privacy protection model by applying it on a real-life
event log and exploring the effect on the accuracy of the process discovery and
performance analysis compared to the ground truth. As the ground truth we use
the original process model discovered from the original event log. We employed
Sepsis Case [13] to conduct our experiments due to some challenging features
that it has for process discovery. This event data is a hospital event log containing
16 unique activities, 1050 traces, and 846 variants, which are unique traces, i.e.,
80% of traces are unique. The maximum number of traces per variant is 35, the
maximum trace length is 185, on average the traces contain 14.5 events, i.e.,
the average length of traces is 14.5. Note that we provide privacy guarantees
w.r.t. the power of background knowledge (L), i.e., all the subtraces having the
maximal length L should fulfill the TLKC-privacy requirements (Definition 11).
Since 80% of traces are unique, this event log is significantly challenging for
privacy-preserving process discovery algorithms [6,14].

Overall 1536 experiments have been done for four different types of back-
ground knowledge, 384 per each background knowledge, using T ∈ {hours,minu-
tes}, L ∈ {2, 4, 8, 16}, K ∈ {10, 20, 40, 80}, C ∈ {0.2, 0.3, 0.4, 0.5}, and Θ ∈
{0.7, 0.8, 0.9}. We consider “disease” and “age” as the sensitive case attributes
in the Sepcis event log. The confidence value C should not be greater than 0.5,
i.e., there are at least two different sensitive values for a victim case. We convert
the numerical attributes to categorical using Boxplots such that all the values
greater than the upper quartile are categorized as high, the values less than the
lower quartile are categorized as low, and the values in between are categorized
as middle. Regarding the number of unique activities in this event log, it is not
realistic to consider the power of background knowledge greater than 16. This is
the maximal set background knowledge, i.e., an adversary knows all the activ-
ities that can be done. Moreover, the length of 75% of the traces in this event
log is maximal 16. We consider two settings as representatives to interpret the
results in detail; weak setting and strong setting. For the weak setting, we use
T = hours, L = 2, K = 10, C = 0.5, and Θ ∈ {0.7, 0.8, 0.9}. For the strong
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setting, we use T = minutes, L = 8, K = 80, C = 0.2, and Θ ∈ {0.7, 0.8, 0.9}.
The implementation as a Python program is available on Github.1

5.1 Process Discovery

To evaluate the effect of applying our method on the accuracy of discovered
models, we consider three main questions. Q1: How accurately do the discovered
process models capture the behavior of the original event log? Q2: How similar
are the discovered process models to the original process model in terms of some
quality measures? Q3: How is the content of the original event log preserved by
the privacy model? To answer Q1, we first discover a process model M ′ from
an anonymized event log EL′. Then, for M ′, we calculate fitness, precision, and
f1-score [1], as some model quality measures, w.r.t. the original event log EL.
Fitness quantifies the extent to which the discovered model can reproduce the
traces recorded in the event log. Precision quantifies the fraction of the traces
allowed by the model which is not seen in the event log, and f1-score combines the
fitness and precision f1-score = 2×precision×fitness/precision+fitness. To answer
Q2, we discover two process models; the original process model M from the
original event log EL and a process modelM ′ from an anonymized event log EL′.
Then, we calculate fitness, precision, and f1-score of M and M ′ w.r.t. EL. At
the end, we compare the results to analyze the similarity of the quality measures.
We use the inductive miner infrequent [10] with the default parameters as the
process discovery algorithm. To answer Q3, we compare the number of variants,
which are the unique traces in the event log, after applying our method with
the actual number of variants. Note that applying privacy-preserving algorithms
may result in high precision and probably high f1-score. However, high values
for some quality measures do not necessarily mean that the privacy-preserving
algorithm preserves the data utility, since the aim is to provide as similar results
as possible not to improve the quality of discovered models.

As we discuss in Section 6, PRETSA is the only similar algorithm which
applies k-anonymity and t-closeness on event data for privacy-aware process dis-
covery. However, PRETSA focuses on the resource perspective of privacy while
we focus on the case perspective of privacy. To compare our method with simi-
lar methods, we have developed a variant of PRETSA algorithm PRETSAcase
where only the k-anonymity part is considered, and the focus is on the pri-
vacy of cases rather than resources. The background knowledge assumed by
PRETSA is a prefix of the sequence of executed activities. We have also devel-
oped two näıve baseline algorithms. baseline1 is a näıve k-anonymity algorithm,
where we remove all the traces that occur less than k times in the event log.
baseline2 considers k-anonymity and maps each violating trace to the most sim-
ilar non-violating subtrace by removing events. For the baseline algorithms and
PRETSAcase only K is considered from the settings.

Figure 2a shows how the mentioned quality measures are affected by apply-
ing our method with the weak setting (average of three experiments regarding

1https://github.com/Widderiru/TLKC-privacy/tree/master/home version
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(a) The measures with the weak setting. (b) The measures with the strong setting.

(c) The #variants with the weak setting. (d) The #variants with the strong setting.

Fig. 2: The number of variants and quality measures comparison between the four variants of TLKC-
privacy, the original results, PRETSAcase, and the baseline algorithms.

Θ), while we consider four variants of our privacy model based on the introduced
types of background knowledge including; TLKCset, TLKCmult, TLKCseq, and
TLKCrel. We compare the measures with the results from the original process
model, two baseline algorithms, and PRETSAcase. If we only consider Q1, the
baseline algorithms should be marked as the best ones, since they result in bet-
ter f1-score values. However, as can be seen in Fig. 2c, the baseline algorithms
remove many variants from the original event log. Consequently, the correspond-
ing anonymized event logs contain significantly less behavior compared to the
original event log, and the resulting models have high precision, which in turn
results in high f1-score. Figure 2a and Fig. 2c show that the results from our pri-
vacy model are considerably similar to the original results, except for TLKCrel.
TLKCrel removes many variants compared to the other variants which is not
surprising regarding the assumed background knowledge which is considerably
strong, but, difficult to achieve in reality.

Figure 2b and Fig. 2d show the same experiments based on the mentioned
quality measures with the strong setting (average of three experiments regarding
Θ). Figure 2d shows that even for the strong setting, our privacy model preserves
a considerably high amount of content of the original event log considering more
general types of background knowledge (bkELset and bkELmult). However, TLKCseq
preserves fewer variants with the strong setting which results in high precision.
Note that the baseline algorithms and PRETSAcase do not protect event data
against the attribute linkage attack and provide weaker privacy guarantees.
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Fig. 3: The performance-annotated DFGs from the projected event log (DFG) and an anonymized
event log (DFG′) for TLKCset and TLKCmult with the strong setting where Θ = 0.7.

5.2 Performance

The effect on performance analyses is evaluated by analyzing the bottlenecks
w.r.t. the mean duration of cases between activities. Since the privacy-preserving
algorithm may have removal activities, we cannot compare the bottlenecks in
the original process model with the bottlenecks in a process model discovered
from an anonymized event log. Therefore, we first project the original event
log on the activities existing in the anonymized event log. Then, we discover
a performance-annotated directly follows graph DFG from the projected event
log and compare it with the performance-annotated directly follows graph DFG′

from the anonymized event log. A DFG is a graph where the nodes represent
activities and the arcs represent causalities. Activities “a” and “b” are connected
by an arrow when “a” is frequently followed by “b” [11].

Here, we show the results for the strong setting with Θ = 0.7 in Fig. 3 and
Fig. 4.2 As can be seen, the bottlenecks in DFG and DFG′ are the same for all
the variants except for TLKCrel, where the assumed background knowledge is
significantly strong and only a few variants remain after applying the method.
Note that the mean duration of the cases are different in DFG and DFG′

because of the use of relative timestamps in the anonymized event logs. This
experiment shows the similarity of the results in terms of real process models.

2These results have been provided by Disco (https://fluxicon.com/disco/) with the
sliders set to the maximal number of activities and the minimal paths.
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Fig. 4: The performance-annotated DFGs from the projected event log (DFG) and an anonymized
event log (DFG′) for TLKCseq and TLKCrel with the strong setting where Θ = 0.7.

6 Related Work

During the last decades, privacy issues have received increasing attention. The
privacy challenges in process mining are more similar to the privacy-preserving
sequential pattern mining [9,4] and anonymizing trajectory data [17,16]. The
privacy model, presented in this paper, extends the LKC-privacy model [16],
both in the parameters and the type of background knowledge, to be fitted in the
context of process mining. In process mining research, confidentiality and privacy
received less attention. In [2], Responsible Process Mining (RPM) is introduced
as the sub-discipline focusing on possible negative side-effects of applying process
mining. RPM addresses concerns related to Fairness, Accuracy, Confidentiality,
and Transparency (FACT). In [15], the authors propose a privacy-preserving
system design for process mining, where a user-centered view is considered to
track personal data. In [19,20], a framework is introduced, which provides a
generic scheme for confidentiality in process mining. In [18], the aim is to provide
a privacy-preserving method for discovering roles from event data.

Most related to our work are [6] and [14], where the authors propose privacy-
preserving techniques for process discovery. Therefore, we pinpoint the differ-
ences with TLKC-privacy model. In [6], the authors apply k-anonymity and
t-closeness [12] on event data to preserve the privacy of resources while we focus
on the case perspective. Also, the assumed background knowledge is a prefix of
sequence of activities which is restrictively specific. In [14], the authors employ
the notion of differential privacy [5]. This research focuses on case perspective
of privacy in process mining which is similar to our research from this point
of view. However, the type of privacy guarantee is noise-based. As shown in
[14], applying the noise-based privacy guarantees on event data is challenging
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when the process models are unstructured and the majority of traces are unique.
Moreover, noise-based techniques do not preserve the truthfulness of values at
the case level [8], i.e., for some cases there is no corresponding individual in real
life. Also, the performance aspect is not considered by this research.

7 Conclusions

In this paper, we introduced two perspectives for privacy in process mining
(case perspective and resource perspective), and we discussed privacy challenges
in process mining. We demonstrated that existing well-known privacy-preserving
techniques cannot be directly applied to event data. We introduced the TLKC-
privacy model for process mining which is an extension for the LKC-privacy
model. Our proposed model preserves the privacy of the cases whose data is
processed in process mining, particularly for process discovery and performance
analyses. It counteracts both the case linkage and the attribute linkage attacks.

We implemented four variants of TLKC-privacy w.r.t. the four different
types of background knowledge. All the variants have been evaluated based on
a real-life event log which is highly challenging for process discovery techniques
in terms of unique traces ratio. 384 experiments were performed per each type
of background knowledge, and the results were given for a weak and a strong
setting. Our experiments demonstrate that TLKC-privacy model preserves the
data utility in terms of similarity of the results to the actual results. Specifically,
for the more general types of background knowledge. Moreover, we showed that
how the cost of privacy increases w.r.t. the strength of background knowledge.

For the multiset variant of TLKC (TLKCmult) many potential minimal vio-
lating traces with the length longer than one can be generated by the presented
algorithm, which results in long computation times. In the future, smarter prun-
ing algorithms could be explored to generate a smaller potential set of minimal
violating traces. Moreover, some algorithms could be designed to automatically
generate reasonable values for the parameters used by our algorithm.
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