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Abstract—Predictive performance analysis is crucial for sup-
porting operational processes. Prediction is challenging when
cases are not isolated but influence each other by competing
for resources (spaces, machines, operators). The so-called perfor-
mance spectrum maps a variety of performance-related measures
within and across cases over time. We propose a novel predic-
tion approach that uses the performance spectrum for feature
selection and extraction to pose machine learning problems used
for performance prediction in non-isolated cases. Although the
approach is general, we focus on material handling systems as a
primary example. We report on a feasibility study conducted for
the material handling systems of a major European airport. The
results show that the use of the performance spectrum enables
much better predictions than baseline approaches.

I. Introduction

Predictive Process Monitoring (PPM) is crucial for support-
ing the operation of Material Handling System (MHS), such as
Baggage Handling Systems (BHS) of airports, where undesired
or unexpected performance scenarios can lead to congestion,
inefficient management of manual operations, baggage mishan-
dling (e.g. being late for a flight) and as a result, to lower cus-
tomer satisfaction and higher operational costs [1]. Predictive
analysis of Process Performance Indicators (PPI), which can
reveal such a problematic scenario in advance allowing to take
mitigating actions. While classically the problem is addressed
through manually built simulation models [2], [3], also event
data generated by material handling processes are available
describing movement of materials or manual operations in the
past. Current Machine Learning (ML) approaches for PPM in
MHS [4] make limited use of the process dimension in the data.
In recent years a variety of PPM approaches have appeared
for Business Processes (BP) [5]. However, these techniques
mostly assume isolated cases and stationary processes, these
assumptions are violated for MHS [6]. Recently proposed PPM
approaches for business processes [5] focus on predicting a
single case assuming isolated cases and stationary processes.
On one hand, these assumptions are violated for MHS and
most business processes [6]. The performance of each case is
dependent on the performance of the cases “around”, i.e., the
recent state of the system itself and the recent performance
of handling groups of cases, rather than on an individual case
performance or properties. In such cases, for the instance
inter-case similarity-based features are required for predicting
remaining time until case completion [7]. On the other hand,
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Fig. 1. The load peak on the X-ray baggage screening machine of a BHS
(process step d) can be computed through the recent historic load on the
check-in counters (process steps a-c) rather than individual properties of cases.

relevant PPIs in practice [5], including MHS, are not measures
for an individual case but aggregate measures such as the
amount of work (cases) expected or the occurrence of high
waiting times (for all cases) at a particular step in a specific
time-window from now. In this paper, we consider the problem
of predicting aggregate PPM in (non-stationary) processes
competing for shared resources, e.g., baggage handling in an
MHS under changing load. In the following we refer to this as
the Inter-Case Performance Prediction Problem (IC3P). The
Performance Spectrum (PS) [6] formats performance data from
process event logs in a way that maps the performance of
each case over each process step over time. The PS reveals the
performance of all cases in a step in relation to preceding and
succeeding steps, non-stationarity of performance, and mutual
influences of cases over time in detailed and aggregated form.
In the following, we show that aggregate PPM can be predicted
directly from features of the PS as the richness of the PS directly
encodes inter-case performance characteristics over time. Fig. 1
illustrates a simplified PS that shows that the workload and
performance of all cases at step d in the future depends on
the recent throughput in steps a-c together. This allows us
to reduce the IC3P problem to an ML problem over features
of the PS. To achieve this result, we introduce the notion of
“feature channels” to capture different process and performance
perspectives in the PS and to describe different PPIs over time
and over process steps.

We provide a general formal formulation of the inter-case
performance prediction problem over the multi-channel PS; and
a methodology for formulating problem instances (especially
feature selection and reduction) and solving the problem (using
standard ML for model training). Our evaluation on simulated
and real-life data demonstrates the feasibility of our approach
and that prediction of aggregated PPM using PS-based features



outperforms prediction using case similarity-based features [7].
The remainder of this paper is structured as follows. We

discussed work related to PPM of MHS and BP in Sect. II. We
recall the PS and introduce the multi-channel PS in Sect. III.
We formally define the generic problem of the IC3P in Sect. IV
and propose the methodology for solving it in Sect. V. We
report on our evaluation on synthetic and real-life event logs in
Sect. VI and discuss our findings and future work in Sect. VII.

II. RelatedWork

For BP, the remaining processing time for a case can be
predicted by regression models [8] or by decorating a transition
system with remaining time [9], prior trace clustering improves
the prediction [10]. In [11], a Naive Bayes classifier predicts
the future path of a single running case and a regression model
predicts the transition durations on this path. The likelihood of
future activities can be predicted using Markovian models [12],
but without providing any time predictions. Completion time of
the next activity can be predicted by training an LSTM neural
network [13], or by learning process models with arbitrary
probability density functions for time delays through non-
parametric regression from event logs [14] that can also be used
for learning simulation models to predict performance [15],
[16]. Competing for shared resources can be taken into account
through simulation models or with queuing models [17]. Using
only features of a single case, these models cannot predict PPIs
for non-isolated cases. Estimating an aggregate PPI through
the outcome of individual cases [18] cannot be used for non-
mandatory outcome of non-isolated cases. Prediction of the
remaining time for a single case in processes with non-isolated
cases is addressed in [7], intra-case features of a running case
of interest are coupled with inter-case features of concurrently
running cases, “close” to the case of interest in terms of control-
flow and temporal distances. However, in processes with tightly
coupled dynamics such as MHS, cases influence each other,
e.g., congestions propagate through the system and resource
problems affect groups of cases, impacting the performance.
The PS-based approach in this paper specifically captures this
dynamics. Since [7] is the current state-of-the-art approach for
inter-case feature encoding, we use it as a baseline.

Among MHS, BHS are studied extensively. In the BHS
domain, relationships between some bag- and system-related
properties can be learned by feedforward NN models [4], but
the results reported as just acceptable, even for a fully control-
lable environment of a simulation model. A risk of baggage
mishandling can be predicted with an aggregated probabilistic
flow graph as a function of travel durations between system
locations [1], while dynamic routing is not supported. Problem-
oriented simulation models allow identifying of bottlenecks and
critical operations for inbound baggage handling [19]; learning
dependencies between security policies and time characteristics
of manual baggage screening [3]. In [2] an overview of
various simulation-based performance prediction techniques
for baggage screening is provided. While these simulation
models are precise, their design requires in-depth knowledge
of a system design and proved to be time-consuming.

Our work contributes to the problem of predicting aggregate
PPIs for processes with non-isolated cases that influence each
other. We capture inter-case dependencies by leveraging the
performance spectrum that we recall next, and learn unknown
system behavior from performance-related features of the
performance spectrum, thereby extending the application of
non-simulation-based approaches of PPM to MHS.

III. Performance Spectrum

We first establish some basic notations for events and logs,
recall the idea of the Performance Spectrum (PS) and revise the
definitions of [6] to provide “elementary” PS building blocks
from which we construct a multi-channel PS for performance
prediction.

Let A be a set of event classifiers; A is usually the set of
activity names, but it may also be the set of resource names, or
locations. Let T be the set of time durations and time stamps,
e.g., the rational or real numbers. Let E be the universe of
events with attributes, and let AN be a set of attribute names.
For any e ∈ E, n ∈ AN, #n(e) is the value of attribute n for
event e (#n(e) =⊥ if attribute n is undefined for e). Each event
has mandatory attributes time, #time(e) ∈ T and act, #act(e) ∈ A.
As a short-hand, we write e(a,t) to indicate that event e has
#act(e) = a and #time(e) = t. Let Z be the universe of cases
with attributes. For any z ∈ Z, n ∈ AN, #n(z) is the value of
attribute n for case z. Each case has a mandatory attribute trace,
#trace(z), defining a finite sequence of events #trace(z) = σ ∈ E∗.
For σ = 〈e1, . . . , en〉, we write |σ| = n and σi = ei, i = 1, . . . , n.
An event log is a set of cases L ⊆ Z where no two traces
share an event.

The Performance Spectrum is a data structure introduced
in [6] to describe the performance of process steps over time.
We first recall the idea and then adopt it for performance
prediction. We call (a, b) ∈ A× A a process segment describing
a step from activity a to activity b, hand-over of work from
resource a to b or the movement of goods from location
a to b. Each occurrence of a segment (a, b) in a trace
〈. . . , e(a,ta)

i , e(b,tb)
i+1 , . . . 〉 allows to measure the time tb−ta between

occurrences of a and b. A histogram H = H(a, b, L) ∈ B(T )
describes how often all the time differences tb − ta between a
and b have been observed in L. In contrast, the performance
spectrum S(a, b, L) collects the actual time intervals (ta, tb)
observed in L. Fig. 2(a) shows the so-called detailed PS for the
segment (a, b): each dot along the a-axis marks an occurrence
of an a-event, correspondingly b-events are shown on the b-
axis. The diagonal line (a1, b1) describes one occurrence of the
segment from event e(a,ta)

i to e(b,tb)
i+1 in the same trace, e.g., the

movement of a bag between two locations. Different lengths
of segment occurrences indicate performance differences for
different cases; changing density of segment occurrences
indicates changing workload on the segment over time.

To allow computing with the visually evident performance-
related features of Fig. 2(a), the PS may also provide classifi-
cation and aggregation of the occurrences of a segment. In the
following, we revise these definitions to allow defining basic
building blocks for process segment, classification, and time
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Fig. 2. In the detailed PS (a) the color-coded lines show cases with different
speed classes, while the aggregated PS with various grouping (b-d) capture
various performance aspects of case handling for each time window.

interval of interest. In [6], occurrences 〈. . . , e(a,ta)
i , e(b,tb)

i+1 , . . . 〉
of (a, b) were classified wrt. duration, e.g., the actual duration
∆t = tb − ta or whether ∆t is in the 25% quartile of the
histogram H(a, b, L). Here, to enable general performance
prediction, we assume a function C that maps two events ei, ei+1
to a performance class C(ei, ei+1, L) = c ∈ C considering any
properties of ei, ei+1 and the log L in which they occur. We call
C : E × E × 2Z → C a performance classifier for C. Examples
are the duration from e(a,ta)

i to e(b,tb)
i+1 , remaining time until case

completion since ei+1, or whether a material had to be routed
from a to b because an alternative route from a was blocked;
scalar values may be abstracted to categories.

If the performance classes C are finite, the detailed PS of
a segment (a, b) can be aggregated over “bins” of a chosen,
fixed duration p, called bin size. For each bin b j and class
c ∈ C we count how many occurrences of segment (a, b) of
class c occur “during” b j. As Fig. 2 illustrates, we may choose
to count the segments that start during b j (ei is in b j but ei+1
is not) (b), stop during b j (d) or are pending (c). For example,
segment occurrence a1b1 has class c3 (color pink), starts in
bin 1, is pending in bin 2 and ends in bin 3. Suppose we
chose to group on start, then, we aggregate this information
into a vector 〈v1

j , v
2
j , v

3
j〉 where, say, v3

j counts the number of
segment occurrences of class c3 that occurred during bin j.
Figure 3(b-d) shows the aggregation vectors for each grouping
and each bin and their visualization as stacked barcharts. Def. 1
and 2 formalizes these for a single segment, classifier, and bin.
We canonically lift them to multiple classes, segments, and
bins afterward.

Definition 1 (Detailed performance spectrum (Detailed PS)).
Let C be a performance classifier for C. Let L be a log and (a, b)
be a segment. The detailed PS of (a, b) in L wrt. C is the bag
SL((a, b),C) = [(ta, tb, c) | 〈. . . e(a,ta)

i , e(b,tb)
i+1 . . .〉 = #trace(z), z ∈

L, 1 ≤ i < |#trace(z)|, c = C(e(a,ta)
i , e(b,tb)

i+1 , L)] ∈ B(T × T ×C).

In Fig. 2(a) elements (ta, tb, c) of the PS are visualized as
lines that start at time moments ta, tb on axes a,b, class c is
indicated by color.

Definition 2 (Aggregation of PS). Let C be a performance
classifier for finite classes C = {c1, . . . , ck}. Let S = SL((a, b),C)
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Fig. 3. The multi-channel Performance Spectrum.

be the detailed PS of a segment (a, b) in a log L. Let p ∈ T be a
duration we call the bin size and let g ∈ {start, stop, pending}.
The occurrences of (a, b) in bin j ∈ N (of length p) regarding
grouping g is the multiset b j such that:
• b j = [(ta, tb, c) ∈ S | j · p ≤ ta < ( j + 1) · p] if g = start,
• b j = [(ta, tb, c) ∈ S | j · p ≤ tb < ( j + 1) · p] if g = stop, and
• b j = [(ta, tb, c) ∈ S | j · p > ta ∧ tb ≥ ( j + 1) · p] if

g = pending (the segment starts before the start of the bin,
and ends after (or at) the end of the bin).

The aggregation of S over bin j and grouping g is the vector
v j = 〈v1

j , . . . , v
k
j〉 ∈ N

k counting how often performance class
ci occurred in bin v j: vi

j = |{(ta, tb, ci) | (ta, tb, ci) ∈ b j}|. Let
SL((a, b),C, g, p, j) = v j.

For example, in Fig. 2(d) the aggregation of the PS for
segment (a, b) over bin 7 and grouping g = stop is vector
〈0, 1, 2〉 which counts ends of all segment occurrences in this
bin: zero for class c1, one for c2 (b7) and two for c3 (points
b5−6).

The aggregation of a detailed PS into a bin has 3 main
dimensions: (1) the segment (a, b), (2) the parameters describ-
ing the bins, i.e., the classification C, the grouping g, and the
period p, and (3) the bin number j. To simplify notation, we
call the bin parameters ch = (C, g, p) a PS channel, and write
SL((a, b), ch, j) = v j for the aggregation vector of Def. 2.

We now show how a bin SL((a, b), ch, j) of the aggregated
PS is the basic building block to formulate various performance
prediction problems. Consider Fig. 3: each bin of the aggregated
PS can be placed in a 3-dimensional space defined by a series
of segments SEG = 〈(a1, b1), . . . , (an, bn)〉, a series of channels
CH = 〈ch1, ....chx〉, and a time interval of bins [s, e] = 〈s, s +

1, ..., e〉 of interest. We use slicing and dicing in this 3d-data
structure to define our prediction tasks. Adopting notation
from algebra software, we let the arguments of SL(·, ·, ·) range
over sequences of segments, channels, and bin numbers to
denote rows, columns, matrices, and cubes of bins along those
dimensions. Let SEG = 〈(a1, b1), . . . , (an, bn)〉 be a sequence of
segments, CH = 〈ch1, . . . , chx〉 be a sequence of PS channels
(of identical period p), ch ∈ CH, and [s, e] = 〈s, s + 1, . . . , e〉 a
sequence of bin numbers, j ∈ [s, e]. We write SL(SEG, ch, j) for
the column vector 〈SL((a1, b1), ch, j), . . . ,SL((an, bn), ch, j)〉>.
Note that this vector consists of vectors vi

j for each segment
(ai, bi) and bin j. In Fig. 3 such a column vector corresponds
to a column of blocks of size n × 1 × 1, e.g. area (1).

We write SL(SEG, ch, [s, e]) for the row vector
〈SL(SEG, ch, s), . . . ,SL(SEG, ch, e)〉. Note that each jth

entry of this vector corresponds to a column vector
SL(SEG, ch, j). In Fig. 3 SL(SEG, ch, [s, e]) corresponds to a
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Fig. 4. The configuration of the historical and target spectra “around” the
current time of the sliding window: the historic spectrum in the past is used
to compute the target spectrum in the future.

frontal ’slice’ of size n × 1 × (e − s + 1) for channel ch , e.g.
area (2). We use this matrix to visualize the performance
spectrum of the segments SEG over the time period [s, e]
in a single channel ch. For example, Fig. 2(b) visualizes
one row of such a matrix and Fig. 3 visualizes an entire
matrix. We also this visualization of the frontal slice for
feature selection in Sect. V. Performance prediction requires
considering information from multiple channels during the
same time period. We write SL(SEG,CH, j) for the column
vector 〈SL(SEG, ch1, j), . . . ,SL(SEG, chx, j)〉>. Note that each
rth entry of this vector corresponds to a column vector
SL(SEG, chr, j). In Fig. 3 SL(SEG,CH, j) corresponds to a
vertical ’slice’ of a single bin columns of size n × x × 1, e.g.
area (3), where it is shown as a matrix over segments and
channels. Note that the order of segments and channels is
arbitrary but fixed to allow implicit encoding of features,
whereas the order of bins is determined by time.

We write SL(SEG,CH, [s, e]) for the row vector
〈SL(SEG,CH, s), . . . ,SL(SEG,CH, e)〉, which correponds
to the whole cube in Fig. 3. Note that this vector is a matrix
with columns corresponding to bins, i.e. time, and rows
corresponding to segments and channels. Such a structure
allows to slice and dice it in various ways. Row vectors can
be used for visual analytics, columns vectors of various bin
intervals can serve for extracting independent and dependent
variables for model training. Aggregation along the bin and
segment axes allows for feature space reduction. We call
SL(SEG,CH, [s, e]) the multi-channel performance spectrum
of L over segments SEG, channels CH, and period [s, e].

IV. Problem Statement

The Inter-Case Performance Prediction Problem (IC3P) is to
obtain a model for predicting the performance of multiple cases
together, in a specific part of the process, within a particular
prediction window. In this section, we show how the features
of the multi-channel PS of Sect. III allow formulating precise
IC3P instances.

A. Problem Formulation with Performance Spectrum

Along the dimensions of the multi-channel PS, the IC3P is to
predict the performance characteristics for segments of interest
for a time-interval in the future (the target spectrum), based

on the performance of relevant segments during a recent time
interval (the historic spectrum). An estimate for a specific PPI
can then be derived by aggregating performance-related features
of the target spectrum. In Fig. 4 a schematic configuration of
such a problem is shown for one channel of a multi-channel
PS. The historic spectrum is specified by a sequence SEGh =

〈s1
h, . . . , s

n
h〉 of segments and a bin interval [sh, eh] where sh <

eh ≤ 0 define offsets from the current bin now in the sliding
window. The target spectrum is given by segments SEGt and
a bin interval [st, et], 0 ≥ st > et with offsets into the future.
Index et defines the prediction horizon (PH). Both historic and
target spectrum are defined over the same sequence CH of
channels. This allows formulating IC3P as a regression problem,
using historic and target spectra as a source of independent and
dependent variables over common time parameter T , formalized
in (1):

SL(SEGt,CH, [st + T, et + T ]) =

f (SL(SEGh,CH, [sh + T, eh + T ])) + R,
(1)

or S L,t(T ) = f (S L,h(T )) + R for short. Function f pre-
dicts values of the target spectrum, and R is a residual,
i.e. the deviation between observed and predicted values.
To learn f , we use the sliding window method [20] for
selecting w samples (S L,h(Ti), S L,t(Ti)) of historic and target
spectrum for times T1, . . . ,Tw, and apply a ML method
to learn f from these samples. By comparing the actual
values y = 〈S L,t(T1), . . . , S L,t(Tw)〉 in the target spectrum
with the values predicted by learned function f , y′ =

〈 f (S L,h(T1)), . . . , f (S L,h(Tw))〉, we can estimate the prediction
error R in f by a function error(y, y′) ∈ R. In general, a target
spectrum does not contain the target PPI directly, but contains
performance-related features sufficient to compute it. For that,
we define the following function:

ppi(T ) = g(SL(SEG,CH, [st + T, et + T ])) + ε, (2)

where error ε = ppi(T ) − ppi′(T ) and ppi′(T ) is the predicted
target PPI observed over interval [st, et].

B. Examples of Problem Instances

We now instantiate the generic problem formulation from
(1) for concrete real-life performance prediction problems of
a major European airport baggage handling system (BHS).
A fragment of its simplified material flow diagram is shown
in Fig. 5. We first consider the process from check-in until
screening. Bags enter the system via one of several dozen
check-in counters a1

1-am
n and then move via conveyor belts to

one of two pre-sorter loops P1,P2 where each bag has to go
to the X-ray baggage screening machines, e.g. entering via
(E1, S 1) and leaving via (S 2, X1). For operational support, the
main concern is to keep the BHS performance steady at some
desired level. In particular, the workload in a processing step or
system part may not exceed its capacity, as this otherwise leads
to long queues or stalling of sorting loops. Here, workload
prediction is central for proactive management. One concrete
problem (PI1) is to predict the load (in bags per minute) at the
X-ray baggage screening machines (SM) on tPH = 4 minutes
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in advance for P1. In Fig. 5 this load corresponds to the load
on segment SEGt,PI1 = 〈(E1, S 1)〉.

To express this problem in terms of (1), we define the target
and historic spectra. First, to represent the load, we define
a PS channel with a single class (load does not distinguish
different classes), grouping start and 1-minute bin: chPI1 =

〈(CPI1, start, 1)〉, where CPI1 returns zero for any segment
occurrence. For log L, the target spectrum for PI1 is S PI1(T ) =

SL(SEGt,PI1, chPI1, [tPH + T, tPH + T ]). The predicted load is the
sum of all its values, in bags per minute. Then we make the
following hypothesis: the load depends on the average load of
the check-in counters in 1-3 minutes before now. To capture
that, we include the check-in segments to the historic spectrum:
SEGh,PI1 = 〈(a1

1, I1), . . . , (am
1 , I1), . . . , (a1

n, In), . . . , (am
n , In)〉 and

time-interval [sPI1
h , ePI1

h ] as [−3,−1]. This leads to the following
regression problem derived from (1):

S PI1(T ) = fPI1(SL(SEGh,PI1, chPI1, [T − 3,T − 1]) + R. (3)

The target PPI is defined as ppiPI1(T ) = S PI1(T )1, where the
index means the aggregate of the fist performance class in
CPI1.

Another concern of BHS operational support is predicting
the risk that baggage being late for a flight; we now instantiate
(1) for this problem (PI2). The second part of the process in
Fig. 5 moves bags from the screening machines to sorting
loops F1,F2 (exit the pre-sorter P1 and P2 via A1

1-A4
2, B1

1-B4
2).

It may happen that, for instance, a bag on P1 that has to go
to F1, cannot be diverted onto any of the conveyors (A1

i , Bi)
because these are unavailable (e.g., due to high load on all
(Ci,Di). In this case, the bag will be looping on P1 until it
can be diverted successfully. Each round increases the bag’s
estimated time to destination (EST) test by the loop duration tP.
If the new estimate t′est = test + tp exceeds the deadline when
the bag has to arrive at its destination to reach the flight, the
bag is expected to be late and correcting actions, e.g. making
the bag priority higher, can be undertaken.

So, to predict such late bags, it is sufficient to predict extra re-
circulation due to unavailability of diverts A1

1-A4
2. We formulate

PI2 as a problem of predicting such re-circulation for P1. On
P1, any bag traveling the segment (A1

1, L1) is re-circulating
(as it could not be diverted to F1,F2), thus the segments
of the target spectrum are SEGt = 〈(A1

1, L1)〉. Selecting
tPH = 60seconds, duration-based classifier CPI2 (whether
t = tb−ta is in the 25%-quartile of the histogram H(a, b, L)) and
chsPI2 = 〈(CPI1, start, 30seconds), (CPI2, pending, 30seconds)〉,
we make a hypothesis, that the target spectrum

depends on the load and delays of SEGh,PI2 =

〈(S 2, X1), (S 2, X2), (A1
i , Bi), (A2

i , Bi), (Bi,Ci), (Ci,Di) | i =

1, . . . , 4〉 for two bins before now. We predict the target
spectrum S PI2(T ) = SL(SEGt,PI2, chsPI2, [T + 1,T + 1]) as
follows:

S PI2(T ) = fPI2(SL(SEGh,PI2, chsPI2, [T − 2,T − 1]) + R. (4)

The PPI is defined as ppiPI2(T ) = SL(SEGt,PI2, chs1, [T + 1,T +

1])1 + ε, i.e. we select channel with grouping start and the first
performance class in CPI2.

V. Approach

In Sect. IV, we showed that prediction of aggregate perfor-
mance measures for non-isolated cased can be expressed as a
generic regression problem over the performance spectrum. In
this section, we present a general methodology on formulating
concrete problem instances and how to solve them using a
standard machine-learning pipeline. Fig. 6 illustrates the overall
methodology.

The main challenge is to correctly select the features for
defining the historic and the target spectra. In the following,
we summarize some lessons learned from our experiments that
we discuss in Sect. VI.

A. Methodology

In Step 1, target segments for the problem, i.e. the segments,
which performance-related features are sufficient for computing
the target PPI, are identified and located in the model. In Step
2, the target segments are considered for aggregation. MHS
equipment is usually redundant, to provide high availability
and fault tolerance of the whole system. For example, several
baggage screening machines, working in parallel, are usually
grouped in a cluster with symmetrical layout and some
load balancing policy. A set of similar-purpose segments
(a1, b1), . . . , (an, bn) can be aggregated into a new aggregated
segment (a∗, b∗) by relabeling ai 7→ a∗, bi 7→ b∗ prior to
computing the PS.

Similar-purpose segments within such clusters can be ag-
gregated in the PS to reduce the feature vector along the
SEG dimension (see Fig. 3). During Step 3 we define PS
channels that contain features, required for computing the
target PPI, by choosing a common granularity (period p),
classifiers and groupings. This step is specific to the problem.
For example, to compute load on a segment, a combination of
grouping start with a constant (single-value) classifier may be
sufficient, as for PI1, while for counting performance outliers
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Fig. 6. The methodology on formulating problem instances of the inter-case
performance prediction problem.

another grouping pending with a duration-based classifier is
required. Then in Step 4, given the identified target spectrum
parameters, a concrete function g (2) is defined. During Step
5, historic PS channels are identified to take into account more
features for estimating the target spectrum. While period p
is common for all the PS channels, particular classifiers and
groupings for these channels depend on the problem and system.
Using domain knowledge and/or performance analysis results
of earlier iterations, additional PS channels can be included into
the historic PS channels vector. Next in Step 6, a multi-channel
PS is computed for the identified PS channels.

In Step 7 we should answer the following question: which
features of the multi-channel PS influence the target spec-
trum and should be included in the historic spectrum? For
that historic segments and time boundaries of the historic
spectrum should be defined. We suggest using the computed
multi-channel PS as a visual analytics technique for feature
selection according to the following guideline. We formulate
the following high-level guideline, which describes the main
steps of such analysis. First, a Segment Group of Candidates
(SGC) to the historic spectrum is identified. The focus is usually
on segments that are in several steps upstream and downstream
the target segments. Additionally, all segments that a priori
affect the target spectrum (according to domain knowledge)
are included. Afterward, the correlation between the target
spectrum features and features of segments in the SGC can
be determined. For example, in Fig. 7 an interval of higher
load on segment s1 causes a higher load on target segment st,
so this segment should be included into the historic spectrum.
Finally, the following questions should be answered. Which
segments of the SGC influence the target spectrum? What is an
average delay of affecting the target spectrum (∆1 in Fig. 7)?
What is the time interval of the historic spectrum that should
be used to estimate the target spectrum (l1 in Fig. 7)?

In Step 8, the Prediction Horizon (PH), i.e., the moment of
prediction, is chosen in light of the dynamics from the segments
and bins in the historic spectrum that dominate the target
spectrum. After this step completion, all required parameters

Historic

Prediction horizon

sc1

st

sh eh st et

Now

Δ1

Target PS

Historic PS

l1

lt

Historic PS

Target PS

(1)

(2)

Δ1

l1

lts1

st

Fig. 7. Visual analytics over the PS: segment s1 influences target segment st .

of the target and historic spectra are defined: the segments
names, start and stop indices. Similarly to Step 2, in Step 9
the historic segments are considered for aggregation.

In Steps 10-11 a standard ML pipeline is exploited for
model training. The multi-channel PS, built in Step 6, is used
directly for the extraction of the training and test sets. Using
the sliding window technique [20], the historic and target sets
are instantiated for each bin of the multi-channel PS, using
the parameters identified in the previous steps, and stored as
a sample of the training or test set for the consecutive model
training. After a model is configured, trained and tested, a
decision on the model accuracy is made. If it is lower than
required, more iterations can be done, e.g. to change the non-
target PS channels, aggregation rules, selected features, PH and
model configuration in order to improve the model accuracy.

In Sect. VI we will apply this approach on PI1 and PI2.

VI. Evaluation

We extended the interactive ProM plug-in ‘Performance Spec-
trum Miner‘ with the multi-channel PS and scripts for training
models in the PyTorch ML framework1. We demonstrated the
feasibility of our approach and compared it to the current state-
of-the-art approach [7] by training models for PI1 and PI2 of
Sect. IV-B (details of data are in Sect. VI-A and VI-B). For the
experiments we applied the training-validation-test approach,
using 20% of the data for testing. The remaining part was
randomly shuffled and used for model training and 5-fold cross-
validation in proportion 4:1. For model learning, we evaluated
three approaches. (1) For our approach, we extracted PS-based
features as discussed in Sect. IV and trained Logistic Regression
(LR) and Feedforward (FF) Neural Network (NN) models that
predict the expected load in the target segments directly. (2) As
a baseline capturing both intra- and inter-case dependencies, we
chose [7]1. As it only predicts PPIs for individual cases, we had
to adopt it for the aggregate PPI as follows. First, we trained
a model for predicting the time between last events of trace
prefixes that end with occurrences of historic spectrum segments
and starts of target segments, using LR and FF NN models. For
each prefix the learned model predicts when it will reach the
“target”. By aggregating how many cases are predicted to reach
the “target” bin, we can estimate the expected load. Because
such an aggregation can be done only for cases that eventually

1the simulation event log, ProM plugin, PyTorch script and source code of [7]
are available at https://github.com/processmining-in-logistics/psm/tree/ppm
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reach target segments, it assumes beforehand knowledge about
future paths of cases. This assumption holds for historic data
on the model training stage, but does not hold for real MHS on
the prediction stage. For example, in the real BHS, considered
in Sect. VI-B, bags can be routed to P2 (see Fig. 5 and never
reach the target segment (E1, S 1) (PI1), or bags from P1,P2
can be sent to sorters G1,G2 instead of F1,F2, thereby being
outside the scope of the re-circulation problem (PI2). (3) As
a naive baseline, we chose an average value of dependent
variables, observed in a time interval [sh, eh], corresponding
to the historic spectrum. To measure errors (see Sect. IV), we
computed Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE) and R squared, which is meaningful for linear
models. Additionally, we did meticulous residual diagnostic of
predictions for test sets. Models were trained on a server with
40 CPUs, six GPUs and 400 GB memory.

A. Simulation Model of a Baggage Handling System

To generate an event log for addressing PI1, we designed a
simulation model of a simple BHS, comprising a typical BHS
layout: conveyors, a sorting loop, a baggage screening machine,
divert and merge units. As a load, a check-in scenario with
normally distributed distances between bags was replayed to
generate an event log with 134.000 events and 11.518 cases for
84 operating hours. Events were recorded when bags passed
through various locations in the system. The resulting training
and test sets have 15 feature variables and 15.000 samples1,
on which we applied approaches (1-3). Table I (a) shows the
resulting measures. Our PS-based models show two times
smaller errors RMSE and MAE than approach (2). The PS-
based LR model has a greater and closer to 1.0 R squared
measure than the LR model of approach (2), i.e. it explains
significantly more variable variations.

B. Baggage Handling System of a Major European Airport

In this experiment, we addressed PI1 and PI2 for a
Vanderlande-built BHS of a major European airport. In the event
log, each case corresponds to one bag, events are recorded when
bags pass sensors on conveyors, and activity names describe
locations of sensors in the system. Events are recorded only
when a bag is diverted to another conveyor, so information
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baseline predicted them with the significant delay as a result of auto-correlation.
Part of peaks (e.g. D and E) were not predicted by the model.

Experiment Approach Model R squared RMSE MAE

(a)
BHS sim. model

PI1

(1) LR 0.82 12.1 8.2
(1) FF NN 0.84∗ 11.6 7.7
(2) LR 0.35 23.2 15.3
(2) FF NN 0.46∗ 21.2 16.2
(3) - - 35.8 23.2

(b)
Real BHS

PI1

(1) LR 0.74 7.0 5.0
(1) FF NN 0.75∗ 6.9 4.8
(2) LR 0.38 10.8 7.9
(2) FF NN 0.69∗ 7.6 5.3
(3) - - 11.0 7.9

(c)
Real BHS

PI2

(1) LR 0.05 3.0 1.8
(1) FF NN 0.45∗ 2.4 1.3
(3) - - 3.0 1.7

TABLE I
Model error measures for PS-based (1), [7]-based (2) and naive (3) approaches.

RMSE andMAE are in % of max. load (a,b) and re-circulation (c).
∗R squared values for FF NN are provided for the sake of completeness.

about the bag locations is significantly incomplete. For one day
of operations, an event log contains on average 850 activities,
25.000-50.000 cases and 1-2 million events. The entire log
contained 148 million events for 120 consecutive days. Events
recorded in non-operating night hours were excluded from the
log. For the test set, days of different months and days of week
were selected.

First, we addressed PI1. Following the approach in Sect. V,
for approach (1) we trained an LR model and a two-layer FF
NN on a dataset with 68 features and 108.000 samples. As
shown in Tab. I (b), both PS-based models have smaller RMSE
and MAE errors than the baseline models, and the R squared
measure of the LR model is also good. Fig. 8 shows how the
LR model correctly predicts peaks and dips in the load of the
scanning machines compared to the recorded data, suggesting
that the model is adequate for the workload prediction. The
LR model is preferred for the sake of simplicity.

Finally we addressed PI2. Again, for approach (1) we trained
an LR model and a four-layer FF NN on a dataset with
148 features and 216.000 samples (two times more than for
the previous experiment because of the shorter bin duration),
using approach (3) as a baseline. Tab. I (c) shows almost zero
R squared of the LR model, that indicates incapability to explain
variable variations, i.e. the model cannot predict infrequent re-
circulation peaks, while RMSE and MAE of FF NN models are
smaller than corresponding values of the baseline. Fig. 9 shows
that the FF NN model correctly predicts moments of peaks in
re-circulation, but consistently underestimates its actual amount,
while the baseline demonstrates auto-correlation.

Despite incompleteness of the log, the sound PS-based



models, trained during the experiments, demonstrated the
feasibility of the suggested approach for PPM problems of the
real BHS as well as for the simulation model.

VII. Conclusion

In this paper, we studied the problem of forecasting per-
formance of non-stationary processes where cases influence
each other through shared resources. We showed that the
performance spectrum (PS) [6] derived from the event log
of a process allows to model a variety of process performance
features over time, capturing also inter-case dependencies.
Specifically, we provided a basic building block defined over the
three basic dimensions of process step, performance measure,
and time interval. We showed that combining multiple such
blocks of features in a multi-channel PS along the three
dimensions allows formulating a large class of performance
prediction problems as a regression problem. We proposed
a methodology of solving this problem as a ML task, using
the historical and target spectrum features as independent and
dependent variables. The methodology includes the approach
for feature selection, based on visual analytics of individual
channels within the multi-channel PS, and process model-based
aggregation of process segments for feature dimensionality
reduction. We provided examples of real-life problem instances
for a BHS and evaluation of our approach by training sound
models for solving these problem instances on the real event log
of a major European airport BHS. We demonstrated feasibility
of our approach and compared it to the current state-of-the-art
approaches, e.g., [7]. The experiments showed that our PS-
based linear model outperforms more complex NN model of
[7]-based approach, and the PS-based NN model outperforms
the naive baseline for the problem instance where [7] is not
applicable due to the optionality of the target process step.
This work has several limitations. First, although supported
by a methodology, feature selection and reduction requires
domain knowledge and expertise. We expect that including a
formal model of the process may help in engineering features
from the performance spectrum. Second, while our models are
technically sound, they still require validation in practice; we
expect the need for higher accuracy, especially for predictions
requiring a longer prediction horizon. Finally, the limitation of
this work is that we only demonstrated the feasibility on MHS.
Although the approach itself is generic and can be applied to
event logs from various domains besides MHS, it does not
take into account intra-case features of individual cases that
are crucial for PPM of business processes. For adopting our
approach for business processes, we aim to combine features of
both aggregate PS-based and case-based PPM in future work.

Acknowledgment

The research leading to these results has received funding
from Vanderlande in the project “Process Mining in Logistics”.

References
[1] T. Ahmed, T. B. Pedersen, T. Calders, and H. Lu, “Online risk prediction

for indoor moving objects,” in 2016 17th IEEE International Conference
on Mobile Data Management (MDM), vol. 1, June 2016, pp. 102–111.
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